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An Introduction to Graphics Processing Unit
Architecture and Programming Models

Argonne Training Program on Exascale Computing

Tim Warburton
John K. Costain Faculty Chair in the College of Science
Professor Of Mathematics and Affiliate Faculty in CMDA
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git clone https://github.com/tcew/ATPESC18



https://github.com/tcew/ATPESC18

“To be ready for supercomputing ...
... Yyou are going to need to know ...

OpenCL or CUDA for GPUSs.”

... and what Tim’s NVIDIA rant unintentionally reveals about coding @CPUs ...



Overview

Part 0: GPU Myths.
Part 1: NVIDIA Graphical Processing Unit
Part 2. Compute Unified Device Architecture (CUDA)

- NVIDIA’s threaded offload programming model.
- Hands on: area of the Mandelbrot

Part 3:

Part 4. Portable programming models:

- Open Computing Language (OpenCL)
- Open Concurrent Computing Abstraction (OCC

Part 5: Hands on flow simulation:

- Prep: find a png image with white background.
- Run GPU flow simulation using your image.

- Visualize your results as a movie.

- Enter competition.



http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

My Research...

Goal: fast, scalable, flexible & accurate numerical PDE solvers
adapted for modern many-core architectures.

Jan S. Hesthaven
Tim Warburton

TEXTS IN APPLIED MATHEMATICS

Nodal Discontinuous
Galerkin Methods

Algorithms, Analysis, and
Applications

..........

@Springer A ey
l

L

Approximation Numerical Numerical methods & Accelerated High Performance
Theory Analysis Physical PDE Modeling omputing Scalability

Basic science

Application

High order, GPU accelerated, Galerkin & discontinuous Galerkin solvers.

GPU programming tools & applications. Industrial collaboration.

Industrial Scale



Some GPU Accelerated Apps...

We have developed accelerated solvers: seismic inversion,
electromagnetics, fluid dynamics, gas dynamics, thermal therapy...

N=5 K=14942

Flow S ‘ MRI Guided
modeling D | ascr Interstitial Therapy

Boliz2D Ni5) - time 0.000
110

Tsunami — B

propagation elastodynamics Kinetic Models

High order, GPU accelerated, Galerkin & discontinuous Galerkin solvers.
GPU programming tools & applications. Industrial collaboration.
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EXASCALE DISCRETIZATIONS

= Xascale Co-Design

The Center for Efficient Exascale Discretizations (CEED) is a co-design center within the U.S. Department of Energy
(DOE) Exascale Computing Project (ECP) with the following goals:

e Help applications leverage future architectures by providing them with state-of-the-art discretization algorithms
that better exploit the hardware and deliver a significant performance gain over conventional low-order
methods.

e Collaborate with hardware vendors and software technologies projects to utilize and impact the upcoming
exascale hardware and its software stack through CEED-developed proxies and miniapps.

e Provide an efficient and user-friendly unstructured PDE discretization component for the upcoming exascale
software ecosystem.

CEED is a research partnership involving 30+ computational scientists from two DOE labs and five universities,
including members of the Nek5000, MFEM, MAGMA, OCCA and PETSc projects. You can reach us by emailing ceed-
users@lIinl.gov or by leaving a comment in the CEED user forum.

The center's co-design efforts are organized in four interconnected R&D thrusts, focused on the following
computational motifs and their performance on exascale hardware. See also our publications.

http://ceed.exascaleproject.org

You will hear more about this from Tzanio Kolev (LLNL) & Mark Shepard (RPIl) on 08/06




IbParanumal: GPU enabled solvers

DOE ECP Flow App libParanumal OCCA
Nek5K Flow Solvers Discretization Core Backends
Incompressible Discontinuous Heterogeneous
Navier-Stokes Galerkin methods hybrid multigrid AL DA
Linear Galerkin finite
Elliptic element methods AWl
Compressible Implicit time
Navier-Stokes steppers OpenMP
. Implicit-explicit time
Galerkin-Boltzmann OpenCL
steppers High-oder Elements P
Benchmarks Explicit time Parallel mesh
https://ceed.exascaleproject.org/nek/ ste p pe rs wran g | In g
https://github.com/paranumal/libparanumal

Goal: Drop in replacement for core elliptic & flow solver functionality of the Nek5000 simulation code.

Animation from Giannakopoulos et al and the SEAL lab http:

fischerp.cs.illinois.edu/seal



http://fischerp.cs.illinois.edu/seal/
https://github.com/paranumal/libparanumal

Resources: lIbParanumal release on 8.1.18

& www.paranumal.com A A < & www.paranumal.com/single-posty2016/02/08 & A A < @ Twitter, Inc. twitter.com/paranumal A A

g % o 8 v s Q- A Q)

é PARALLEL NUMERICAL ALGORITHMS RESEARCH TEAM @VT é PARALLEL NUMERICAL ALGORITHMS RESEARCH TEAM @VT

Home  Software Blog  Publications Team  Alums Software  Blog  Publications  Team  Alums paranuma

Rough-n-Ready Roofline: NVIDIA V100 Recent Posts

edition

February 8 2018 | Tim Warburton Posting Pages
f P : @paranuma

In this pest we discuss rules of thumb for performance limizers when using shared

Tweets Following Followers Lists Moments

10 1 3 0 0

memory in 8 NVIDIA V100 CUDA compute kemnel.

The V100 16GB PCI-F card has ‘ Rough-n-Ready
E A— ofline: NVIDIAVIOO

1. Theoretical device memory bandwidth of 900GB/s. Using cudaMemepy we

Tweets Tweets & replies

measure achievable memory bandwicth of 790GB/s.

Parallel Numerical

2. Combined shared memory & L1 cache with which we g ste tc have

" )“E,W 1 (5H + LD GBYs = 80 (cores) x 32 (rmd width) x4 (vord bytes) x ngorithms at VT . N S;A}M @t ?L;:;I.AP./l‘x.ews Feb 9
s B3 Concurrent Cloud L SIAM. Check out SIAM's latest book, Numerical Methods for Consen
3 Treo / Cemputing: installing Parallel Numerical Algorithms Research Jan S. Hesthaven! bookstore siam.org/cs18
Putting these together we plot the following FP64 performance pyramid for the VICO: occaBench Group at Virginia Tech
Februery 6, 2018 Joined February 2018 JAN'S. HESTHAVEN
Web page: paranumal.com Blog: paranumal.com/blog Twitter: twitter.com/paranumal
# arxiv.orgfabs/1711.00903 v A A < & Github, Inc. github.com/kswirydo/CEED-AX v A A : — 0 SugR/IBN 00240 & AlA

Cornell UniVL‘TSity We gratefully acknowledge support from
the Simons Foundation
We gratefully lcknowlslll:::nssumo;;:m’m" Pull requests Issues Marketplace Explore and University Libraries Virginia Tech
and member institutions
" 2 (Help | Advanced search)
arXiv.org > cs > arXiv:1711.00903 Search or Article ID Papers —
(Help | Advanced search) <> Code ssues 0 Pull requests 1 Projects 0 Wiki Insights Mathematics > Numerical Analysls Download:
Computer Science > Mathematical Software Download' . ) ) ) A GPU Accelerated Discontinuous Galerkin : (P)?:er formats
. No description, website, or topics provided. lncompre55|ble Flow Solver tosnsed
i - * PDF .
Acceleration of tensor prOdUCt « Other formats ©s . 121 branch S 0 reh 22 Ali Karakus, Noel Chalmers, Kasia Swirydowicz, Timothy Warburton Current browse context:
- - - & commits ranc releases o math.NA
operations for hi gh-order finite element dicerse) (Submitted on 31 Dec 2017 (v1), last revised 7 May 2018 (this version, v3)) < prev | next >
methods Current browse context: We present a GPU-accelerated version of a high-order disconti Galerkin discr new | recent | 1801
csMS Branch: master v New pull request Create new file  Upload files  Find file I of the unsteady incompressible Navier-Stokes equations. The equations are discretized in Change to browse by:
Kasia $wirydowicz, Noel Chalmers, Ali Karakus, Timothy < prev | next > time using a semi—lr'npli:il scheme with explicit treatment of l.he nonlinefnr term efnd implicit P
Warburton new | recent | 1711 g kswirydo minor changes in readme Latest commi treatment of the split Stokes operators. The pressure system is solved with a conjugate cs.DC
gradient method together with a fully GPU-acc multigrid prec it which is ‘I:"‘f
. PRI " : mat
(Submitted on 2 Nov 2017 (v1), last revised 13 Nov 2017 (this version, v2)) Change to browse bv' i BP10 modified BP10 driver designed to memory req and to increase overall performance. A semi- physics
s Lagrangian subcycling advection algorithm is used to shift the computational load per physics.comp-ph
This paper is devoted to GPU kernel optimization and performance ¢s.DC i BP30 formatted OKL files timestep away from the pressure Poisson solve by allowing larger timestep sizes in physics.flu-dyn
analysis of three tensor-product operators arising in finite element ¢s.NA exchange for an increased number of advection steps. Numerical results confirm we achieve o
t: ds. W id P th lAp | back dgt th cs.PF m BP35 formatted OKL files the design order accuracy in time and space. We optimize the performance of the most References & Citations
methods. We provide a mathematical background to these math time-consuming kernels by tuning the fine-grain parallelism, memory utilization, and = NASA ADS
operations and implementation details. Achieving close-to-the- math.NA [E README.md minor changes in readme maximizing bandwidth. To assess overall performance we present an empirically calibrated Bookmark e «
peak performance for these operators requires extensive L roofline performance model for a target GPU to explain the achieved efficiency. We B D
optimization because of the operators' properties: low arithmetic References & Citations BE README.md demonstrate that, in the most cases, the kernels used in the solver are close to their
intensity, tiered structure, and the need to store intermediate © NASA ADS empirically predicted roofline performance.
results inside the kernel. We give a guided overview of optimization DBLP - CS Bibliography .
i d t rformance model that allows us to listing | bib Comments: 33 pages, 10 figures
strategies and we present a pe " ! isting | bibtex Subjects. ical Anal (math.NA), D Parallel, and Cluster Computing (cs.DC).
compare the efficacy of these optimizations against an empirically Kasia Swirydowicz CE E D-Ax Performance (cs.PF); Computational Physics (physics.comp-ph); Fluid Dynamics (physics.flu-
calibrated roofline. Noel Chalmers dyn)

VT CEED BK paper: P100 BKs: github.com/kswirydo/CEED-AXx VT INS2D+OCCA+Sub-cycling+AMG

You can also send queries to: paranumal@vt.edu

libParanumal source code: https./qgithub.comy/paranumal/libparanumal



http://paranumal.com
http://paranumal.com/blog
http://twitter.com/paranumal
https://arxiv.org/abs/1711.00903
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https://arxiv.org/abs/1801.00246
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https://github.com/paranumal/libparanumal

Today: slides & repos

Slides:

www.math.vt.edu/people/tcew/ATPESC18

Examples:

git clone https://github.com/tcew/ATPESC18

OCCA repo (0.2 branch version for this tutorial):

git clone https://github.com/libocca/occa -b 0.2

Examples and the OCCA framework



http://www.math.vt.edu/people/tcew/ATPESC18
https://github.com/tcew/ATPESC18
https://github.com/libocca/occa

Part 0: GPU

Reality Check




Myth #1: GPU 100x faster than CPU

|
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NVIDIA P100: High Bandwidth Memory Intel E7-8894 v4: 4 memory channels
up to 732 GB/s up to 85 GB/s per socket

htto://www.nvidia.com/object/tesla-p 100.html
https://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2 40-GHz

Majority of HPC codes are memory and network bound.



http://www.nvidia.com/object/tesla-p100.html
https://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz

Myth #1: GPU 100x faster than CPU

~Intel®Xeon®
g Platinum

NVIDIA V100 GPU: Intel Intel® Xeon® Platinum 8180 CPU:
up to 900 GB/s (HBM?2) up to 119 GB/s bandwidth per socket

For well optimized bandwidth limited codes with more data than cache
=> one GPU is about 3.5x faster than a dual socket CPU.

httos://ark.intel.com/oroducts/96900/Intel-Xeon-Processor-E 7-8894-v4-60M-Cache-2_40-GHz
https.//www.gamepc.com/shop/products?sku=900-2G503-0000-000-16GB

Majority of HPC codes are memory and network bound.



https://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz
https://www.gamepc.com/shop/products?sku=900-2G503-0000-000-16GB

Myth #2: GPUSs are expensive

NVIDIA P100: ~$5K Intel E7-8894 v4: ~$9K

Price estimates from htto://www.thinkmate.com/
htto://www.anandtech.com/show/11121/intel-xeon-e7-8894-v4-cou-24c-48t-9000-usd

Prices for non-consumer GPUs are carefully calibrated to be similar to CPU.

| these are both premium high-end processors |


http://www.thinkmate.com/
http://www.anandtech.com/show/11121/intel-xeon-e7-8894-v4-cpu-24c-48t-9000-usd

Myth #2: GPUSs are expensive

NVIDIA V100 GPU: Intel Intel® Xeon® Platinum 8180 CPU:
$7-12K each ~$10K per socket

T

Super ridiculous top end CPU

Price estimates from htto://www.thinkmate.com/
htto://www.anandtech.com/show/11121/intel-xeon-e7-8894-v4-cou-24c-48t-9000-usd

Prices for non-consumer GPUs are carefully calibrated to be similar to CPU.

[ these are both premium high-end processors |


http://www.thinkmate.com/
http://www.anandtech.com/show/11121/intel-xeon-e7-8894-v4-cpu-24c-48t-9000-usd

Myth 3: GPU & CPU are very different
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NVIDIA P100: 56 “cores” with Intel E7-8894 v4: 24 hyper- threading
4 32-way SIMT units cores with 256 bit AVX2 instructions

htto://www.nvidia.com/object/tesla-p 100.html
httos://ark.intel.com/products/96900/Intel-Xeon-Processor-E 7-8894-v4-60M-Cache-2_40-GHz

GPUs and CPUs both consist of multiple cores each equipped with SIMD vector units.



http://www.nvidia.com/object/tesla-p100.html
https://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2_40-GHz

Myth #4.0;: OpenACC is maqic

OpenAGC -

Directives for Accelerators

http.//icons.iconarchive.com/icons/hadezign/hobbies/256/Magic-icon.png

‘good” OpenACC codes are quite often derived from good CUDA implementations.




Myth #4.1: CUDA is magic

NVIDIA. °
CUDA

http.//icons.iconarchive.com/icons/hadezign/hobbies/256/Magic-icon.png

‘good” CUDA codes quite often emerge from a prolonged gestation.




Reality Check

It takes more than 3 hours to master GPUs...

... but we can discuss some of the basics ...

... background to the Kokkos & Raja talks on easier GPU computing ...
... there are many web resources ...

... and nothing beats hands on.

21 hours of fun: https.//developer.nvidia.com/udacity-cs344-intro-parallel-programming



https://developer.nvidia.com/udacity-cs344-intro-parallel-programming

Part 1: From

CPU to GPU




PU: architecture tollows purpose
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Original design goals for CPUs:

e Make single threads very fast.
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e Reduce latency through large caches.

e Predict, speculate.
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CPU: abstract modern architecture

Modern “CPU-Style” core design emphasizes
individual thread performance.

Instruction Out-of-order control logic
Fetch/Decode

- Branch predictor logic

Memory pre fetch unit

Execution
contexts

Large data cache

Adapted from presentations by Andreas Kléckner and Kayvon Fatahalian

Execution context: memory and hardware associated to a specific stream of instructions, e.q. registers.

22



GPU: massively parallel processing

htto://developer.nvidia.com/object/gpu-gems-3.html
23


http://developer.nvidia.com/object/gpu-gems-3.html

GPU: massively parallel compute

Design goals for GPUSs:
e Throughput matters and single threads do naot.
e Hide memory latency through parallelism.
¢ | et programmer deal with “raw” storage hierarchy.
e Avoid high frequency clock speed:

e Desirable for portable devices, consoles, laptops...

http.//developer.nvidia.com/object/gpu-gems-3.html



http://developer.nvidia.com/object/gpu-gems-3.html

GPU: early example

Die floorplan: AMD RV770 (2008) 55 nm, 800 SP simultaneous ops
The majority of the silicon is devoted to computation

http://www.anandtech.com/show/2556/8



http://www.anandtech.com/show/2556/8

GPU: early example

Comparison of block diagram of vintage GPU and CPU
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Pads
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 —— L2 Cache
Fuses
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r— L1-]
L1-D Load/Store/ Bus Gach
Cache MOB _T ache
S—— IUs |
Retire | _I
Scheduler Fetch Branch
FP & SIMD Int & ROB Predict
Translate
Rename
Pads

http://www.anandtech.com/show/2556/8



http://www.anandtech.com/show/2556/8

GPU: Maxwell architecture

NVIDIA Maxwell GM204 GPU

PolyMorph Engine 3.0

PCI Express 3.0 Host Interface

GPC

Raster Engine Dispatch Unit Diepatch Unit Dispatch Unit Dispatch Unit
2 x T z

“uw SNM
e Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Memory Controller
Jajonuo) Aowal

Core Core Core

Core Core Core

28888 EE
5S8RSR
81 05 080 8 00 S 08

Core Core Core

-
)
*

-t

o

*
)

-t

)

»*

| [InstructionBuffer
© Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
R R o B

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

<SANVIDIA,

Core Core  Core

Core Core  Core
Core Core Core

Core Core  Core

Core Core Core

Memory Controller
Jonuon Lowaw

Core Core  Core

Core Core  Core

S 05 05 08 S0 S
208088888

SNM MM SNM SMu SMM Sum

-~ -~
Raster Engine Raster Engine

GPC GPC

16 Maxwell cores each have four SIMD clusters with 32 ALUS.
Data streams at ~56 GFLOAT/s and peak 4.6 TFLOP/s (SP)



CPU v GPU: fundamental difference #1

Each CPU core executes scalar or vector operations.
Each GPU core only executes vector instructions.

------- el i il el el il | e e

Integer Physical Register File
(180 Registers)

Scheduler
Unified Reservation Station (RS)

(97 entries)

(168 Registers)

Vector Physical Register File

[ Port0O | | Port1 | | Port5 | | Port6 | | Port2 | | Port3 | | Port4 | | Port7 |
ALU ALU ALU ALU & Shift |Load Addrsl Load Addrs|[ STA |[  STA |
|_Vect ALU || Fast LEA Fast LEA Branch ||Store Addrs||Store Addrs|
Vect Shift Vect ALU Vect ALU
Vect Add Vect Shift || Vect Shuffle
Vect Mul Vect Add
FMA Vect Mul
DIV FMA
Branch Slow Int
Slow LEA
............ & ___ 0 _____ & ____ L _____RA_____ B ______ L __

CPU: Single Instruction Multiple Data (SIMD)
parallelism through ILP & vector execution units.

Rogistor File (16,3384 x 32.bt)

IR EEE

GPU: SIMD parallel execution
of all operations

http.//en.wikichip.org/wiki/intel/microarchitectures/skylake

Compilers may need to be coaxed into generating vector instructions for CPU.

Recall: “Performance, SIMD, Vectorization and Performance Tuning” talk by James Reindeer.


http://en.wikichip.org/wiki/intel/microarchitectures/skylake

CPU v GPU: fundamental difference #2

GPU cores are engineered to switch quickly

between threads to recover stalls

Rogistor Filo (16,384 x 32.bit)

Rogistor File (16,384 x 32.bit]

| i gE====== 7 pe====== b HEEEEEEE" [ HJE==Emm—=== ge====== ]
1 1 Core Core Core Come W Cors Corm Com Come LOST  SFU
. Scheduler ] = o o -
i Unified Reservation Station (RS) : Core Core Core st |sru
] Integer Physical Register File (97 entries) Vector Physical Register File 3 o) o) S L
: (180 Registers) (168 Registers) ' Core Core Corn St SFU
1 y Core Core Corn SFU
' [ Port0 | | Portl | | Port5 | | Port6 | | Port2 | | Port3 | | Port4 | | Port7 | | — — — ——
1 1
: : Core Core Core $FU
: ALU ALU ALU ALU & Shift |Load Addrsl Load Addrs|[ STA |[ STA |
1| _VectALU || FastLEA Fast LEA Branch ||Store Addrs||Store Addrs| 1
' Vect Shift Vect ALU Vect ALU :
. Vect Add Vect Shift || Vect Shuffle )
- Vect Mul Vect Add '
' FMA Vect Mul ;
. DIV FMA )
} Branch Slow Int '
' Slow LEA {
AN [ Sus DU SR DR S B

Skylake core: 180 Integer registers and

168 floating point registers Maxwell core: 16K registers

http.//en.wikichip.org/wiki/intel/microarchitectures/skylake

Compilers may need to be coaxed into generating vector instructions for CPU.



http://en.wikichip.org/wiki/intel/microarchitectures/skylake

GPU: summary of architecture

e A GPU has multiple cores and each core:

e Branching code (“ifs”) involves partial serialization.

e NicC

Has one (or more) wide SIMD vector units.
Wide SIMD vector units execute one instruction stream.
Has a pool of shared memory.

Shares a register file shared privately among all the ALUSs.

Summary of multi-level GPU parallel architecture

st | SFU

LU SFU

ar  SFU

ST SFU

SFU

ST SFU

Dapatch Unt Crapatch
kS =

Rogistor File (16,334 x 32.01)

Fast switches thread blocks to hide memory latency. R

e

Core Comm ¢

summary:

*SIMD width here is the number of ALUs in one of the core’s vector unit.

The actual specifics vary but this is a good abstract viewpoint.

Tewturs / LY Cache

Ura

=1 SFu

LOST | SFU

Comn

Cere

Core

Core

[ InstructionBuffer | Instruction Bul



http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Part 2: NVIDIA GPUs

Core Evolution

NVIDIA's Compute Unified Device Architecture
GPU programming model



GPU: excess AlLLUs

Modern GPUs combine: multiple wide vector processing cores with
local and global shared-memory.
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Each Fermi core (SM) has a SIMD clusters of 32 FPUs
Data streams at ~50 GFLOAT/s and computes up to 1.4 TFLOP/s (SP)

Theoretical peak performance requires ~28 FLOP per float moved between device & memory !!!

Note: for the Fermi generation cards they put the L1 and L2 caches back @



PU: Kepler GPU

GK110: 15 cores that cluster 192 FPU each.
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Each Kepler core (SMX) has six SIMD clusters of 32 ALUs
Data streams at ~70 GFLOAT/s and peak 4+ TFLOP/s (SP)

Image credits: http.//www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk 1 10-arrives-at-last/3
http://www.tomshardware.com/reviews/geforce-gtx-titan-gk 1 10-review,3438.html 33


http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last/3
http://www.tomshardware.com/reviews/geforce-gtx-titan-gk110-review,3438.html

GPU: Maxwell GPU

NVIDIA Maxwell GM204 GPU
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16 Maxwell cores each have four SIMD clusters with 32 ALUS.
Data streams at ~56 GFLOAT/s and peak 4.6 TFLOP/s (SP)




GPU: Pascal GPU

Professional NVIDIA Pascal GP100 architecture with 60 cores using 16nm fab size

PCI Express 3.0 Host Interface

Dispatch Unit
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Register File (32,768 x 32-bit)

Consumer variants use GDDR5(x) memory with up to 480 GB/s bandwidth
and up to 3584 ALUs with peak 10.1 TFLOP/s (SP) 0.3 TFLOP/s (DP)

60 Pascal GP100 cores each with two SIMD clusters of 32 ALUs (3840 Total).

HBMZ2 memory streams data at ~1 TB/s and peak 10.6 TFLOP/s (SP), 5.3TFLOP/s (DP)



GPU: Volta GPU

Professional NVIDIA Pascal GV100
architecture with 84 cores using 12nm fab size
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84 Volta GV'100 cores each with four SIMD clusters of 16 ALUs (5120 Total).




GPU: trends in FPU Clusters

The FPU clusters (“core”)

2007: G80 2008: Tesla 2010: Fermi
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GPU: Kepler to Maxwell to Pascal

The FPU clusters (“core”) in 3 recent NVIDIA processor architectures

Kepler SMX Maxwell SMM Pascal SM
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Trend: smaller die process yields more space for shared memory and registers.
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GPU: Pascal to Volta

The FPU clusters (“core”) in 2 latest NVIDIA processor FP64 heavy architectures
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Trend: smaller die process yields space for additional half precision “tensor-cores”
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PU: a decade of core architectures

In 10 years the NVIDIA core count & core architecture has scaled remarkably well ...
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... their roadmap has been signposted and CUDA codes have scaled

... yet somehow many major HPC codes have not adapted.




Blog: high-order FEM & HPC

Info on using NVIDIA V100 cloud instances/benchmarking/optimizing
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Part 20D

GPU programming with
CUDA Threading

NVIDIA's Compute Unified Device Architecture
GPU programming model



Warped lerminology

CUDA
e |s laced (ahem) with terminology derived from weaving like “warp”, “thread”, “texture”.

¢ \We refer instead to a thread array and SIMD groups.

[ live with a “weaver” and was just clued in...




CUDA: compute unified device architecture

e
-

CUDA was released by NVIDIA in 2007.

A
© 06 /<A Parallel Programming and X “
C f | | www.nvidia.com/object/cuda_home_new.html ol M =

ANVIDIA. USA - U Sttes
DRIVERS » PRODUCTS » COMMUNITIES » SUPPORT SHOP ABOUT NVIDIA »
NVIDIA Home > Technologies > CUDA Parallel Computing Platform E’Zl Subscribe
Y e ¥:,
LEARN MORE AN T
NVIDIA" CUDA N e . @2
CUDA Spotlights Parallel Programming and Ci | ‘ T TN TR N ‘
CUDA Newsletter N % e XAy b Sk NVIDIA.
. .‘_ > ‘ . Q,, ! v 7

CUDA Centers of Excellence
Women and CUDA

WHAT IS CUDA? FOR DEVELOPERS
FOR DEVELOPERS Visit CUDA Zone to start
Enroll today! e
CUDA Toolkit Intro to Parallel Programmi e
CUDA Zone ntro to fzra el Programming .
GPU Tech Conference An open, online course from Udacity GO TO CUDA ZONE
Instructors: Dr. John Owens, UC Davis and Dr. David Luebke, NVIDIA
PRODUCTS . . . . Try a free test drive of NVIDIA
CUDA® is a parallel computing platform and programming model invented by TESLA K40 GPUs
NVIDIA GeForce NVIDIA. It enables dramatic increases in computing performance by harnessing REGISTER
NVIDIA Quadro the power of the graphics processing unit (GPU).

CUDA is used to program NVIDIA GPUSs.

CUDA includes a HOST API and a DEVICE kernel programming language.




CUDA: offload model

The programmer explicitly moves data between HOST and DEVICE

1. cudaMalloc: allocate memory
for a DEVICE array

3. Queue kernel task on DEVICE

2. cudaMemcpy: copy data
from HOST to DEVICE array

4. cudaMemcpy: copy data
from DEVICE to HOST array

Key observation: the DEVICE and HOST are asynchronous.

Operations are queued on the DEVICE.

https://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-780
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GPU: natural thread model

The GPU architecture admits a natural parallel threading model

e Programmer partitions a compute task into kernel code:
e Programmer assigns kernel code to independent work-blocks:
e \Work-block assigned to a core with sufficient resources to process it:

e Each core processes work-block kernel code with a work-group of “threads”

The work-group is batch processed in sub-groups of SIMD* work-items.

Each work-item processed by a “thread” passing through a SIMD lane.

A stalling SIMD group of “threads” is idled until it can continue.

“Threads” in a work-group can collaborate through shared memory.

The work-block stays resident until completed by core (using resources).

e Main assumption: same instructions for independent work-groups.

*SIMD here is the number of ALUs in one of the core's vector unit.




CUDA: example HOST code

Overview of C-like CUDA code that runs on the HOST:

#include "cuda.h" simpleKernel.cu

int main(int argc,char sxargv){
int N = 3789; // size of array for this DEMO

float *xd_a; // Allocate DEVICE array
cudaMalloc((voidkx) &d_a, Nxsizeof(float));

int B = 512;:
dim3 dimBlock(B,1,1); // 512 threads per thread-block
dim3 dimGrid((N+B-1)/B, 1, 1); // Enough thread-blocks to cover N

// Queue kernel on DEVICE
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

// HOST array
float *h_a = (floatx) calloc(N, sizeof(float));

// Transfer result from DEVICE array to HOST array
cudaMemcpy(h_a, d_a, Nxsizeof(float), cudaMemcpyDeviceToHost);

// Print out result from HOST array
for(int n=0;n<N;++n) printf("h_al%sd] = %f\n", n, h_aln]);

Note the .cu file extension.
We use NVIDIA's CUDA Compiler nvce to compile .cu files.




CUDA: host code

Overview of C-like HOST code for a simple kernel that fills a vector of length N

1. Allocate array space on DEVICE:

float *d_a; // Allocate DEVICE array (pointers used as array handles)
cudaMalloc((voidxx) &d _a, Nxsizeof(float));

2. Design thread-array:

dim3 dimBlock(512,1,1); // 512 threads per thread-block
dim3 dimGrid((N+511)/512, 1, 1); // Enough thread-blocks to cover N

3. Queue compute task on DEVICE:

// specify number of threads with <<< block count, thread count >>>
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

4. Copy results from DEVICE to HOST:

float xh_a = (floatx) calloc(N, sizeof(float));
cudaMemcpy(h_a, d_a, Nxsizeof(float), cudaMemcpyDeviceToHost)

Key APl calls: cudaMalloc, cudaMemcpy



http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_gc63ffd93e344b939d6399199d8b12fef.html#gc63ffd93e344b939d6399199d8b12fef
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g48efa06b81cc031b2aa6fdc2e9930741.html

CUDA: motivating serial function

Before jumping into how to write a CUDA kernel
we consider first a serial function that fills an array with entries 0:N-1

void serialSimpleKernel(int N, float *d_a){

for(n=0;n<N;++n){ // loop over N entries

d_aln] = n;

To make a two level thread parallel implementation we partition (or chunk) the n-loop




CUDA: motivating serial function

Consider the case with N=20 - then break the for loop into independent tiles:

void serialSimpleKernel(int N, float *d_a){
for(n=0;n<N;++n){ // loop over N entries

d_aln] = n;

gl o] 1 l2]al4fo]of7]slo]oliifialiafialis]io]i7]ia]io

S ol i[2]slo]il2]slo]il2]slofilafslofi]2]s
b:O b=1 b=2 b=3 b=4

We can think of splitting the n-loop into tiles of size 4: n=t+4b.

Here: block dimension = 4 and grid dimension = 5.



CUDA: serial function with loop tiling

We tile the n-loop into equal sized tiles (here tile size is blockDim)

void tiledSerialSimpleKernel(int N, float *d_a){

for(int b=0;b<gridDim;++b){ // loop over blocks
for(int t=0;t<blockDim;++t){// loop inside block

// Convert thread and thread-block indices into array index
const int n =t + bxblockDim;

// If index is in [0,N-1] add entries

if(n<N) // guard against an inexact tiling
d_aln] = n;

gl o] |2]al4fs]of7]elo]iolii]izliafielis]ie]i7] i8]0
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We assume the loop boundaries (gridDim and blockDim) are externally specified variables.

We also assume that: N <= gridDim*blockDim. Tiling also referred to chunking sometimes.



CUDA: tiled serial function

We rename variables to conform with CUDA naming convention.
dim3 type intrinsic variables: threadldx, blockDim, blockldx, gridDim

void tiledSerialSimpleKernel(int N, float *d_a){

for(blockIdx.x=0;blockId.x<gridDim.x;++blockIdx.x){ // loop over blocks

for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block

// Convert thread and thread-block indices into array index
const int n = threadIdx.x + blockDim.x*xblockIdx.X;

// If index is in [0,N-1] add entries
if(n<N)
d_aln] = n;

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: N <= gridDim.x*blockDim.x




CUDA: multi-dimensional thread rank

Each thread can determine its (multi-dimensional) rank with respect to both
Its rank in the thread-block and the rank of the thread-block itselt.

Intrinsic variables

Thread indices in
thread-block threadldx.x threadldx.y threadldx.z
Dimensions of , | |
thread-block blockDim.x blockDim.y blockDim.z
Block indices. blockldx.x blockldx.y blockldx.z *

Dimensions of grid of
thread-blocks

gridDim.x gridDim.y gridDim.z *

Remember: we can identify task parallelism by associating
tasks with combination of thread-index and block-index.

Best practice: avoid frequent branching based on threadldx or blockldx.

* three dimensional grid of thread-blocks supported as of CUDA 2.7



CUDA: limitations

The CUDA compute capability evolves with ongoing NVIDIA GPU hardware revisions.

Compute capability (version)
Technical specifications
----l-l
Maximum dimensionality of grid of thread blocks

Maximum Xx-, y-, or z-dimension of a grid of thread blocks

Maximum number of resident blocks per multiprocessor
Maximum number of resident warps per multiprocessor
Maximum number of resident threads per multiprocessor
Number of 32-bit registers per multiprocessor

Maximum number of 32-bit registers per thread

Maximum amount of shared memory per multiprocessor

Number of shared memory banks

Table credit: CUDA wikipedia page ( htto://en.wikipedia.org/wiki/CUDA )



http://en.wikipedia.org/wiki/CUDA

CUDA: tiled serial function

We rename variables to conform with CUDA naming convention.
dim3 type intrinsic variables: threadldx, blockDim, blockldx, gridDim

void tiledSerialSimpleKernel(int N, float *d_a){

for(blockIdx.x=0;blockId.x<gridDim.x;++blockIdx.x){ // loop over blocks

for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block

// Convert thread and thread-block indices into array index
const int n = threadIdx.x + blockDim.x*xblockIdx.X;

// If index is in [0,N-1] add entries
if(n<N)
d_aln] = n;

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: N <= gridDim.x*blockDim.x




kernel

CUDA: simple array operation

// HOST code to queue kernel
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

__global __ specities kernel
Threadldx & blockldx

7

_global_)void simpleKernel(int N, float xd_a){

(// Convert thread and thread-block indices into array index

determine thread

rank that is mapped

to array index

\const int n = threadIdx.x + blockDim.xxblockIdx.x;
(// If index is in [0,N-1] add entries
if(n<N)

d_aln] = n;
1 \§

Action performed by

each thread

Key observation: the loops are implicitly executed by thread parallelism

and do not appear in the CUDA kernel code.

This body of the kernel function is the inner code from the chunked version of the function.

The kernel is executed by every thread in the specified array of threads.



Code Along: CUDA Hello World

c,=a,+b forn=0,.,N—-1

Embarrassingly parallel. ..



CUDA: offload model

The programmer explicitly moves data between HOST and DEVICE

: .
HTH AL
ST -

1. cudaMalloc: allocate memory
for a DEVICE array

2. cudaMemcpy: copy data
from HOST to DEVICE array

3. Queue kernel task on DEVICE
4. cudaMemcpy: copy data

from DEVICE to HOST array

11,
1y

——— s e i i b wh, e, e 5 T

https://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-780

Key observation: the DEVICE and HOST are asynchronous.
Operations are queued on the DEVICE. 53



Code Along: diving straight into CUDA

Code along demo:
CUDA code to add two vectors together from scratch !!!
You can find a pre-made version here:

https://github.com/tcew/ATPESC18/tree/master/examples/cuda/addVectors

Wacky CUDA syntax used:

Thread rank and size info: threadldx.x, blockldx.x, blockDim.x
DEVICE function (kernel) annotation:  __global__

Allocating/freeing a DEVICE array: cudaMalloc, cudaFree

Copy data between DEVICE and HOST: cudaMemcpy

Copy direction: cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost

Kernel launch : addVectorsKernel <<< dimGrid, dimBlock >>> (N, d_a, d_b, d_c);

See instruction sheet handout for set up instructions on the cooley system.



https://github.com/tcew/ATPESC18/tree/master/examples/cuda/addVectors

Hands On #0: reverse an array in CUDA

Adapt the CUDA code to reverse the entries in an array:
bn — a(N_l_n) for n = O,...,N_ 1
Start with your code along code, or use the pre-baked version:

https://github.com/tcew/ATPESC18/tree/master/examples/cuda/addVectors

Things to pay attention to:

1. Make sure you copy back the correct CUDA DEVICE array to the HOST.
2. How many threads should you use to avoid read-write race conflicts 7
3. Change the number of threads.

4. Print the whole b array after the kernel.

10 minutes...

Work in teams of two.



https://github.com/tcew/ATPESC18/tree/master/examples/cuda/addVectors

Hands On #1: compiling/running CUDA

This example requires CUDA GPU, drivers, and SDK is installed.

cooley.alcf.anl.gov: make sure .soft.cooley includes and resoft
+mvapich2

+cuda-7.5.18

+ffmpeg-1.0.1

@default

# clone the examples on the login node:
git clone https://github.com/tcew/ATPESC18

# if you haven’t already done so, queue an interactive job request:
gsub —A ATPESC2018 -I -n 1 -t 120 —-q training

# find the source
cd ATPESC18/examples/cuda/simple

# compile on node with the NVIDIA CUDA compiler (nvcc) installed
nvcc —o0 simple simple.cu

# run on node with the NVIDIA CUDA runtime libraries installed
./simple

Make sure you can complete this exercise now if possible !

Source code: https://github.com/tcew/ATPESC18/examples/cuda/simple


http://cooley.alcf.anl.gov
https://github.com/tcew/ATPESC18/examples/cuda/simple
https://github.com/tcew/ATPESC18

CUDA: multi-dimensional tiled serial function

CUDA supports up to 3 nested outer “block” loops,
with a sequence of 3 nested inner “thread” loops

void tiledSerialMultidKernel(int N, float *d_a){

for(blockIdx.z=0;blockId.z<gridDim.z;++blockIdx.z){ // loop over z-blocks
for(blockIdx.y=0;blockId.y<gridDim.y;++blockIdx.y){ // loop over y-blocks
for(blockIdx.x=0;blockId.x<gridDim.x;++blockIdx.x){ // loop over x-blocks

// loop over thread indices in thread-block
for(threadIdx.z=0;threadIdx.y<blockDim.z;++threadIdx.z){
for(threadIdx.y=0;threadIdx.z<blockDim.y;++threadIdx.y){
for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x)

// Convert thread and thread-block indices into array index
const int nx = threadIdx.x + blockDim.x*blockIdx.Xx;
const int ny = threadIdx.y + blockDim.y*xblockIdx.y;
const int nz threadIdx.z + blockDim.zxblockIdx.z;

// Perform action based on thread-ranks

aEn '

FrIFFE
}

Key observation: the iterations in each iteration are assumed to be independent




CUDA: multi-d array operation kernel

// HOST code to queue kernel
dim3 dimGrid(GX,GY,GZ), dimBlock(BX,BY, BZ);
multidKernel <<< dimGrid, dimBlock >>> (N, d_a);

__global__ void multidKernel(int N, float *d_a){

" // Convert thread and thread-block indices into array index |
const int nx = threadIdx.x + blockDim.x*blockIdx.x;
const int ny = threadIdx.y + blockDim.y*xblockIdx.y;
| const int nz threadIdx.z + blockDim.zxblockIdx.z;

(operations based on thread ranks; ]

Key observation: the loops are implicitly executed by thread parallelism
and do not appear in the CUDA kernel code.

This body of the kernel function is the inner code from the chunked version of the function.

The kernel is executed by every thread in the specified array of threads.



CUDA: elliptic solver example

We consider a more substantial example: solving the Poisson problem.

Elliptic Poisson problem:

) 2
g 7+ 0 7= /() in Q=[=LIX[-L1I
X By
u=0 on 0Q

Poisson problem is an archetypal building block for many physics packages.




CUDA: elliptic solver example

Elliptic Poisson problem:

o°’u Ju
= . I Q: —1,1 —1,1
u=0 on 0Q

We represent the numerical solution at a reqular grid of finite-difference nodes.



CUDA: elliptic solver example

First step discretize the equations into a set of linear constraints.

Elliptic Poisson problem:
d’u du
+ = f(x,y
ox> 9y’ f(xy
u=0 on
Discrete Poisson problem (assumir @
Ujiiny ~ 205 U N Uyjory = 2U° Q0O
5’ 5’ @

The derivative operators are approximated by second order differences.

The discrete Poisson problem is approximated at the finite difference nodes.



CUDA: discrete elliptic example

We solve the linear system for the unknowns using the
stationary iterative Jacobi method

Discrete Poisson problem (assuming Cartesian grid):

u...—2U.+U.. U .....—2U.+U, . .. .
( J(i+1) Ji J(i 1))+( (j+1)i Ji (J l)l)zfﬁ fOI‘l,jZl,...,N

5’ 5
u;,=0 fori=0,N+lorj=0,N+1

Jacobi iteration for discrete Poisson problem:

k k+1 k k k+1 k
u...  —=2u."+u" . u.. ... —=2u."{u-. ..
J(i+l) Ji J(i—1) (j+D)i Ji (Jj-Di | _ e e

u, =0 tori=0,N+lorj=0,N+1

Yes, this is not the best way to solve the problem.

But it is simple.



CUDA: elliptic solver example

Rearranging we are left with a simple five point recurrence:

Jacobi iteration for discrete Poisson problem:

k k+1 k k k+1 k
u...  =2u."+u" . u.. . =2u."{u-. ..
JG+l) Ji J-1) (j+D)i Ji (J-Di | _ e e

u; =0 fori=0,N+1lorj=0,N+1

lterate:

k k Co.
+u +uj(i_1)) fori,j=1,....N

1
k+1 .~ Q2 k k
7 —4( O fit Uiy tu i)

Jt (Jj+1Di (j=Di

while:

Source code: https.//github.com/tcew/ATPESC 18/examples/cuda/simple



https://github.com/tcew/ATPESC17/examples/cuda/simple

CUDA: parallelism for solver example

For the iterate step we note:
each node can update independently for maximum parallelism.

lterate:

+ut

1
o L e2 k k k

Jt (Jj+1Di (j=Di

) fori,j=1,...N 54

The GPU works best when every thread is doing the same thing.



CUDA: serial Jacobi iteration

The explicit serial loop structure for the Jacobi iteration shows no loop carry dependence:

Serial kernel:

void jacobi(const int N,
const datafloat xrhs,
const datafloat x*u,
datafloat *newu){

for(int i=0;i<N;++i){
for(int j=0;j<N;++j){

// Get linear index into NxN
// inner nodes of (N+2)x(N+2) grid
const int id = (j + 1)*(N + 2) + (i + 1);

newul[id] = 0.25fx(rhs[id]
+ ulid - (N+2)

lterate:
k+1 l(_ng n
U, = 1 itu

k
(j+D)i

k
T UG,

]
+ ulid + (N+2)]
+ ulid - 1]
+ ulid + 11);

k k .. }
+u +uj(l._1)) fori,j=1,....N

j(i+1)

Note: we use an NxN array of threads and change leave the edge nodes unchanged.

At the start we set: rhs=-delta*delta*f




CUDA: parallel Jacobi iteration

For CUDA: each thread can update a node independently for maximum parallelism.

lterate:

k+1 _l
llji —

4(—52fﬁ +u

k
(j+D)i

+ut

k
Tu jGi-1)

j(i+1)

) fori,j=1,....N }

CUDA kernel:

__global__ void jacobi(const int N,

const datafloat xrhs,
const datafloat xu,
datafloat *xnewu){

// Get thread indices
const int i1 = blockIdx.xxblockDim.x + threadIdx.x;
const int j = blockIdx.yxblockDim.y + threadIdx.y;

// Check that this is a legal node
if((1i < N) & (j <N)){

// Get linear index onto (N+2)x(N+2) grid
const int id = (j + 1)*(N + 2) + (i + 1);

newul[id] = 0.25fx(rhs[id]
+ ulid - (N+2)]
+ ulid + (N+2)]
+ ulid - 1]
+ ulid + 1]);

Note: we use an NxN array of threads and leave the edge nodes unchanged.

At the start we set: rhs=-delta*delta*f



https://github.com/tcew/ATPESC17/tree/master/examples/cuda/jacobi

CUDA: parallelism for solver reduction

To make this more parallel we need to split the termination into CUDA thread-blocks:

Reduction:
i=N-1

e= 3 v
i=0

Block reduction ( B blocks )

p=B-1 i=T-1
€= 2 Visbr
i=0

B =

Next we need to distribute the inner sum work over the threads in each of the B thread-blocks.




CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

Ste
__global__ void partialReduceResidual(const int entries, tp ’ 5 3
datafloat *u, Thread

datafloat *newu,
datafloat *blocksum){

IIEHIIIIIHII
36

4
8+11 19 19+17

__shared__ datafloat s_blocksum[BDIM];
3 3+8 11 11+6 | 17

const int id = blockIdx.xxblockDim.x + threadIdx.x;

s_blocksum[threadIdx.x] = 0; 5 5+6 11

if(id < entries){
const datafloat diff = ul[id] - newul[id];
s_blocksum[threadIdx.x] = diffxdiff;

}

2 2+4 6

int alive = blockDim.x;
int t = threadIdx.x;

while(alive>1){

__syncthreads(); | // barrier (make sure s_blocksum is ready)

alive /= 2; // reduce active threads
if(t < alive) s_blocksum[t] += s_blocksum[t+alivel;

}

i (t==0) gl
blocksum[blockIdx.x] = s_blocksum[Q]; 'Itquet: :E: \Z
=0

Here the __shared__ array is read/writeable only by threads in the same thread-block.

All threads in the thread-block have to enter the __syncthreads() before any of them can continue.



CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

Ste
__global__ void partialReduceResidual(const int entries, tp ’ 5 3
datafloat *u, Thread

datafloat *newu,
datafloat *blocksum){

IIEHIIIIIHII
36

4
8+11 19 19+17

__shared__ datafloat s_blocksum[BDIM];
3 3+8 11 11+6 | 17

const int id = blockIdx.xxblockDim.x + threadIdx.x;

s_blocksum[threadIdx.x] = 0; 5 5+6 11

if(id < entries){
const datafloat diff = ul[id] - newul[id];
s_blocksum[threadIdx.x] = diffxdiff;

}

2 2+4 6

int alive = blockDim.x;
int t = threadIdx.x;

while(alive>1){

__syncthreads(); // barrier (make sure s_blocksum is ready)

alive /= 2; // reduce active threads
if(t < alive) s_blocksum[t] += s_blocksum[t+alivel;

}

i (t==0) gl
blocksum[blockIdx.x] = s_blocksum[Q]; 'Itquet: :E: \Z
=0

Here the __shared__ array is read/writeable only by threads in the same thread-block.

All threads in the thread-block have to enter the __syncthreads() before any of them can continue.



CUDA: parallel reduction

D ® (< [ ~ @& GitHub, Inc. github.com/tcew/ATPESC16/tree/master/examples/cudafreduction ¢ A A (4]
_ , . -
This repository Pull requests Issues Gist A +~ v
tcew /| ATPESC16 ®Unwatch~ 1 %Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master~v  ATPESC16 |/ examples / cuda / reduction / Create new file Upload files  Find file  History
tcew fixed errors and typos Latest commit 924805f a minute ago
[E) main.cu fixed errors and typos a minute ago
[E) makefile adding standalone reduction cuda example 10 minutes ago
© 2016 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub API Training Shop Blog About

The .cu file contains both the partialSum reduction DEVICE kernel and the HOST code.

Note: the HOST code includes event based timing of the kernel execution.




Hands On #2: CUDA Mandelbrot Area

Converting the Mandelbrot example from Tim Mattson’s talk to CUDA.

#1. Retrieve the files:

git clone https://github.com/tcew/ATPESC18

#2. Complete the skeleton code
ATPESC18/handsOn/mandelbrot/mandelbrot.cu

[ Do things labelled TASK, don’t touch things marked FREEBIE ]
#3. Hints:

To compile (on cooley.alcf.anl.gov):

nvcc -arch=sm_30 -o mandelbrot mandelbrot.cu -Im
To run (on a cooley compute node):

/mandelbrot
Useful CUDA keywords (google for details) :

thread rank: threadldx.x, threadldx.y, blockldx.x, blockldx.y, blockDim
keywords: _ device_, global

| to turn off CUDA kernel optimization: nvcc -Xptxas -O3 -arch sm_30 -0 mandelbrot mandelbrot.cu -Im |



http://cooley.alcf.anl.gov

Part 3: Interlude on

CUDA performance

Dark Arts Indeed



Classic Definition of “Supercomputer”

This is a well known definition of a “supercomputer”

“A supercomputer is a device for turning compute-bound problems
into I/O-bound problems.”

Ken Batcher”

Attribution is a little cloudy: *possibly Seymour Cray



... Another Cool Quote...

In much the same vain...

"Arithmetic Is cheap, bandwidth is money, latency is physics.”

Mark Hoemmen™

NVIDIA can be viewed as a company that sells expensive GDDR memory.

*Student of Jim Demmel: thesis web link



http://escholarship.org/uc/item/7757521k?query=latency%20is%20physics;hitNum=1#page-43

CUDA: memory options

The different memory spaces on the GPU have different characteristics

Location Latency  Cached Access Lifetime
Register On-chip 1 N/A Read/write One thread Thread
Local Off-chip 1000 No Read/write One thread Thread
Shared On-chip 2 N/A Read/write All threads in a block Block
Global Off-chip 1000 Yes™ Read/write All threads & host Application
Constant Off-chip 1-1000 Yes Read All threads & host Application
Texture Off-chip 1000 Yes Read All threads in a block Application
Recaad(;ﬁgly On-chip Low Yes Read/write ? ?

Adapted from Timothy Lanfear's CUDA Tutorial Slides




CUDA: limitations

Recall the table showing that CUDA compute capabilities have evolved over time

Compute capability (version)

2 3

Maximum dimensionality of grid of thread blocks

Maximum x-, y-, or z-dimension of a grid of thread blocks 65535 231-1

e

Maximum number of resident blocks per multiprocessor

Maximum number of resident warps per multiprocessor

Maximum number of resident threads per multiprocessor

There are several interesting tidbits here.
Table credit: CUDA wikipedia page ( htto://en.wikipedia.org/wiki/CUDA )



http://en.wikipedia.org/wiki/CUDA

CUDA: occupancy calculator

The amount of register space is highly constrained:
kernels with high register count will have low occupancy

3

7 Al 4 @ © (- fx| CUDA GPU Occupancy Calculator
- A | w— C I D I | RSN Rry— I | I—C— =
1 CU DA GPU OCCU pancy Ca|CU|at0r Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA. visit http://developer.nvidia.com/cuda
Just follow steps 1, 2, and 3 below! (or click here for help) Your chosen resource usage is indicated by the red triangle on the graphs. The other data
_ points represent the range of possible block sizes, register counts, and shared memory
1.) Select Compute Capability (click): 35 {Help) allocation.
1.b) Select Shared Memory Size Config (bytes) 49152
Impact of Varying Block Size
2.) Enter your resource usage: My B
Threads Per Block 256  (Hon) o -y N
Registers Per Thread 32 - /
Shared Memory Per Block (bytes) 4096 2 56
(Don't edit anything below this line) § 48 / O g
- 40
=y f
{Halp) g5 2 /
2z
g = 24 [
g 16
g Py
= 8
Physical Limits for GPU Compute Capability: = 0
: 0 64 128 192 256 320 384 448 512 576 €40 704 768 832 896 960 1024
Threads Per Block
Impact of Varying Register Count Per Thread
My Register Count 32
84 ﬂ
& 56
1
"
g 48
o
=Allocatavle | 8 40
Allocated Resources Per Block ___Limit Per SM___ Blocks Per SM £2
1 [Warps (Threads Per Block / Threads Per Warp) 8 64 8 =& 2
Registers (Warp limit per SM due to per-warp reg count) 8 64 8 § : 24
Shared Memory (Bytes) 4096 49152 12 §
Note: SM is an abteevigton for (Streamng) Muliproosssor 16
8
Maximum Thread Blocks Per Multiprocessor Blocks/SM __* Warps/Block = Warps/SM s @8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Max Blocks per Multiprocessor 8 8 64 2 e
8 8 84 R AAYRNE RS IRNRNCR R s S EENNRRER
T Limited by Shared Memory per Mulliprocessor 12 R &N o °; "’T“ NORRANORIANOR®®
Note: Cocupancy Smiler is shown in crsnge Physica' Mu WWISM - 64 eg‘ﬁt@'s er Thread
Occupancy = 64 / 64 = 100%

CUDA Occupancy Calculator: (download) spreadsheet tallies up register count, shared memory count, and

thread count per thread-block to estimate how many thread-blocks can be resident.


http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA: shared memory banks

Shared memory is organized as interwoven “memory banks” with separate managers.
A shared memory array spans up to 32 independent memory banks.

Shared Memory: memory space organization

SERIGCIN 31 | 63 | 95

SERIGEl 30 | 62 | 94

5 | 37 | 69

4 | 36 | 68

3 | 35|67

2 | 34| 66

Shared memory managers

1 ]33 |65

O | 32|64 |128




CUDA: shared memory banks

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a
different bank unless they all access the same entry.

Shared Memory: memory space organization

Bank 31
Thread 31
EN] @-
Thread 30
2
)]
(@)
qv)
: ©-
S Thread 5
>
@)
& Thread 4
S Ca
3 Thread 3
g
N Thread 2
e

Thread 1

Thread O

OK: all threads in the SIMD group access different shared memory banks




CUDA: shared memory banks

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a
different bank unless they all access the same entry.

Shared Memory: memory space organization

Thread 31

Thread 30

Thread 5

Thread 4

Thread 3
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OK: all threads in the SIMD group access different shared memory banks




CUDA: shared memory broadcast

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a
different bank unless they all access the same entry.

Shared Memory: memory space organization

Bank 31
Thread 31
Bank 30 RO
: \\ Thread 30
)]
S O SN
S . . Thread 5
= ® \\\
& \\\\\ Thread 4
S O
i \\\ Thread 3
S O
%) \\ Thread 2
O
Thread 1
O

Thread O

OK: all threads in the SIMD group access the same entry results in an efficient broadcast.




CUDA: shared memory broadcast

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a
different bank unless they all access the same entry.

Shared Memory: memory space organization

Thread 31

Thread 30
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BAD: all threads in the SIMD group access the same bank resulting in serialization.



CUDA: accessing device memory

High end NVIDIA GPUs either have 256 or 384 bit wide memory bus to device memory
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Kepler Memory Hierarchy

1. GPU has a “coalescer” that collects DRAM memory requests. i
2. The coalescer efficiently streams contiguous, aligned blocks of memory Shagj & s
by avoiding repeated address setup. i yh Data Cache
| )

The GPU bus to DRAM consists of 6x 64 bit busses.
Each bus has an independent memory controller.

B W

Rule of thumb. avoid non unitary stride DEVICE (DRAM) array access.

Usetul slides , these , and image credit: link



http://parlab.eecs.berkeley.edu/sites/all/parlab/files/CatanzaroIntroToGPUs.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://gpu.cs.uct.ac.za/Slides/Kepler2.pdf

CPU Optimization Technigues

Cache
® Data loaded into cache from aligned contiguous blocks (cache lines)

m 192 224 256 288 320
|| i *
l l 96

64

o | 32

L1 Cache

Vectorization
® Use large registers instructions to perform operations in parallel.

® Also uses continuous load instructions to vectorize efficiently.

0 32 64 96 SSE/AVX —>

Continuous memory accesses are used for both, cache storage and vectorization

David S Medina



CPU Optimization Technigues

Multithreading
® Threads capable of fully parallelizing generic instructions (ignoring bandwidth).

o \\\1" >
1 "\ \\I" >
2 "\ N2\N >

® Perfect scaling ... without barriers, joins, or other types of thread-dependencies.

=
aias 6

e SIMD Lanes

Executing parallel instructions using multithreading

David S Medina



GPU Optimization Techniques

GPU Architecture

e |ndependent work-groups are launched.
e \Work-groups contain groups of work-items, “parallel” threads.

\\Group 0 Group | Group 2

™~
I I | | . I I | | . I I | | .
e
// I | I |- I | I |- I | I |-
I | | | | . I | | | | | . I | | | | .
| ImL__ImL__ il I (D DN | | . | ImL__ImL__ Il

Global Memory

Kernel code describes the work-item operations

David S Medina



GPU Optimization Techniques

Work-groups

e Groups of work-items.
e No communication between work-groups. = = ) = | ] =

I
[
[
1
[

e Designed for independent group parallelism. = =

e Avoid inter-block synchronization (deadlocks). || &l & e 4%; “11n

e Avoid data race dependencies between blocks.

Work-items

® \Work-items are executed in parallel, able to barrier and share
data using shared memory (& CUDA's shuffle). —  —
® Avoid data race dependencies between work-items. ! ] ! !

David S Medina



GPU Optimization Techniques

Parallel Work-item Execution

e \Nork-items are launched in subsets of 32 or 64.
® Each set of work-items execute same instructions. | |— — | —

e No parallel branching (in the subset).

\
----)

=S80

Data Transfer
® | ow individual bandwidth and high latency.

® Coalesced memory access on contiguous and aligned work-items.

m 192 224 256 288 320

David S Medina



CPU & GPU Similarities

CPU Optimizations

Cache Vectorization Thread Independence
m m m [o ] o
L1 TR [ W] >
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L1 Cache
Coalescing No Branching Work-group Independence
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Exposing vectorization / SIMD parallelism are vital in both architectures

David S Medina



Part 4: Portable

programming models




RIP: Blinky 01/15/14-08/03/15

Blinky was a MacBook Pro with discrete NVIDIA GPU and OpenMF, OpenCL, CUDA ...
Latest MBP comes with AMD GPU andyor Intel Iris GPU, no CUDA, and default clang compilers omit OpenMP g,



Many-core: fragmentation

/00 of competing architectures and programming models (with vendor bias)

Intel CPU

fow s > |

NVIDIA GPU

OpenACC.

DIRECTIVES FOR ACCELERATORS

Need an efficient, durable, portable, open-source,

vendor-independent approach for many-core programming
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NVIDIA.
CUDA




Part 4a:

Open Compute
. anguage (OpenCL)




OpenCL: standards committee

® 006 <3 OpenCL - The open stand. X

& C' M _ www.khronos.org/opencl/ QAw - =

SN R S Login Members | Adopters | Implementers QEEEIIINICIIKS] -
K H R\)E N o s Developers © Conformance © Membership © News ~ Events ~ Forums ~

GROUP
CONNECTING SOFTWARE TO SILICON

‘ m OpenCL OpenGL OpenGL ES WebGL WebCL COLLADA glTF EGL
? OpenSL ES OpenMAX SPIR SYCL Streamlnput OpenVX Camera Other

Home » OpenCL

OpenCL SPIR SYCL Overview PDF Overview Forums Adopters Resources

' #% | The open standard for parallel
el | wea | programming of heterogeneous

212 ‘

systems

96 OpenCL™ is the first open, royalty-free standard for cross-platform, parallel programming of

modern processors found in personal computers, servers and handheld/embedded devices.

OpenCL (Open Computing Language) greatly improves speed and responsiveness for a wide

102 spectrum of applications in numerous market categories from gaming and entertainment to
scientific and medical software.

W Tweet

21
- OpenCL 2.0 a
in B

Quick-reference-card for OpenCL 2.0: (link)

The Khronos Group administers the OpenCL standard.



http://www.khronos.org/files/opencl20-quick-reference-card.pdf

OpenCL: standard for multicore

OpenCL allows us to write cross platform code
(customization need for best performance)

KHRCSNOS

GROUP

The Khronos Group administers the OpenCL standard.



OpenCL: who ?

OpenCL Working Group

» Diverse industry participation
- Processor vendors, system OEMs, middleware vendors, application developers

 Many industry-leading experts involved in OpenCL’s design
- A healthy diversity of industry perspectives

* Apple made initial proposal and is very active in the working group
- Serving as specification editor

oy. | Ao BT [AMDZV ARM solboon [@cderry] @) ericsson 2

OS e “freescale’ FU][TSU @ §rapnicREMEDY ’,c HE+ ln/teb !‘H?.%':‘Z‘J&’I ﬁ.’smamos

O WQM woidn  NIDIKIA T%A =] Petapath ERSS QuALcOMW
- rakomi | E1ecs | TOSHIBA | Zii

¥

© Copyright Khronos Group, 2010 - Page 4

The OpenCL standard changes relatively slowly over time compared to CUDA.

Credit: Khronos Group


http://www.khronos.org/developers/library/overview/opencl_overview.pdf

OpenCL: why 7

Processor Parallelism

GPUs

Increasingly general
purpose data-parallel
computing

CPUs

Multiple cores driving
performance increases

e Multi- Graphics

O processor APIs and

—>° programming Shading
- e.g. OpenMP Languages

OpenCL is a programming framework for heterogeneous compute resources

© Copyright Khronos Group, 2010 - Page 3

Emphasis on heterogeneous computing.

Credit: Khronos Group



http://www.khronos.org/developers/library/overview/opencl_overview.pdf

OpenCL: why 7

It's a Heterogeneous World

A modern platform Includes:
— One or more CPUs
— One or more GPUs
— DSP processors
- ... other?

OpenCL lets Programmers write a
- single portable program that uses
K ALL resources in the
O heterogeneous platform
zO

GMCH = graphics memory control hub
ICH = Input/output control hub

KHROD

© Copyright Khronos Group, 2010 - Page 9

Emphasis on heterogeneous computing.

Credit: Khronos Group


http://www.khronos.org/developers/library/overview/opencl_overview.pdf

OpenCL: when 7?

CUDA and OpenCL are competing standards for GPGPU programming

CUDA 1.1 released

February 2008
<A Nvidia adds 0S X support
Apple proposes OpenCL working group
May 2008
Draft standard submitted
/’ October 2008
KHR NOS Working group submits draft
E:l;)rﬁ:;e;;g o “*e** standard to the Khronos Group
<A Nvidia releases first CUDA SDK CUDA 2 released Snow Leopard 0SX
June 2008 pa
BrookGPU ) o August 2009
AMD Stream SDK <A Nvidia adds support for
October 2004 — November 2007 December 2007 double precision —
Permanently in “beta” . —— NN
OpenCL speification released v
December 2008

KHRCONOS Khronos releases OpenCL

" as royalty-free specification

Includes OpenCL
libraries

CUDA 3 released
February 2010

<3

Nvidia adds Fermi stuff

GPGPU “quiet time”

Only a few hardy souls tried GPU computing before CUDA was released.




OpenCL: terminology 7

OpenCL is ** very ** closely related to CUDA

CUDA OpenCL

Kernel Kernel
Host program Host program
Thread Work item
Thread block Work group
Grid NDRange (index space)

The rapid development of OpenCL helps explain the similarities




OpenCL: thread indexing

OpenCL is ** very ** closely related to CUDA

CUDA OpenCL

Local indices: Local indices:
threadldx.x threadldx.y get_local_id(0) get_local_id(1)
Global indices: Global indices:

blockldx.x*blockDim. |blockldx.y*blockDim.y

X + threadldx.x + threadlax.y get_global_id(0) get_global_id(1)

The rapid development of OpenCL helps explain the similarities




OpenCL: thread array dimensions

OpenCL is ** very ** closely related to CUDA

CUDA OpenCL

gridDim.x get_num_groups(0)

blockldx.x get_group_id(0)

blockDim.x get_local_size(0)
gridDim.x*blockDim. get_global_size(0)

The rapid development of OpenCL helps explain the similarities



OpenCL: kernel language qualifiers

OpenCL is ** very ** closely related to CUDA

CUDA OpenCL

__global__ function __kernel function
__device__ function function
__constant__ variable __constant variable
__device__ variable __global variable
__shared__ variable __local variable

The rapid development of OpenCL helps explain the similarities



OpenCL: memory model

Again, the memory model for CUDA and OpenCL are very similar

Shared Memory Shared Memory

Registers Registers Registers Registers

Thread (0,0) | Thread (1,0) Thread (0,0) | Thread (1,0)

Constant

Texture

Private Private Private Private
Memory Memory Memory Memory

Work-ltem Work-ltem Work-ltem Work-ltem

Local Memory Local Memory

Workgroup Workgroup

Global/Constant Memory

Computer Device

Host Memory

OpenCL
Image system not shown

AMD OpenCL slides

The rapid development of OpenCL helps explain the similarities
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http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx#instructor

OpenCL: setting up a DEVICE

OpenCL is very flexible, allowing simultaneous heterogeneous computing with possibly
multiple implementations, command queues, & devices in one system [ CPU+GPUSs |

To set up a device:
1. Choose platform (implementation of OpenCL) from list of platforms:

e c|GetPlatformlIDs

2. Choose device on that platform (for instance a specitic CPU or GPU):
e clGetDevicelDs

3. Create a context on the device (manager for tasks):
e clCreateContext

4. Create command gueue on a context on the chosen device:

e c|CreateCommandQueue

With flexibility can come complexity.




OpenCL: HOST code APl headers

The include files ...

CUDA OpenCL

#include <cuda.h> . #ifdef _ APPLE

i #include <OpenCL/opencl.h>
' |#else

" #include <CL/cl.h>

' #endif




OpenCL: setting up a platform

For flexibility we first have to choose the OpenCL “platform”

#include <cuda.h>

int main()

{

// nothing special to do (really only one CUDA platform)

cl_platform_id platforms[100];
cl_uint platforms_n;

/* get list of platforms(platform == OpenCL implementation) x/
clGetPlatformIDs (100, platforms, &platforms_n);

Any given system may have multiple OpenCL platforms from different vendors installed.

We will choose one of the returned platform IDs.




OpenCL: choosing a device

Next we choose a device supported by the platform.

int dev = 0;
cudaSetDevice(dev);

cl device_id devices[100];
cl _uint ndevices;

clGetDevicelIDs(platforms[plat],CL_DEVICE_TYPE_ALL, 100, devices, &ndevices);
if(dev>=ndevices){ printf(“invalid device\n”); exit(0); }

// choose user specified device
cl device_id device = devices|[dev];

Each OpenCL platform can interact with one or more compute devices.




OpenCL: setting up a context

Next we choose a context (manager) for the chosen device.

// nada

cl_context context;

// make compute context on device (pfn_notify is an error callback function)
context = clCreateContext((cl_context_properties *x)NULL, 1, &device,
&pfn_notify, (voidx)NULL, &err);




OpenCL: setting up a common gqueue

Next we choose a context (manager) for the chosen device.

// not necessary although you may wish to use cudaStreamCreate

// make compute context on device (pfn_notify is an error callback function)
cl_command_queue queue =
clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err);




OpenCL: compiling a DEVICE kernel

Since the platform+device+context is chosen at runtime
It Is customary to build compute kernels at runtime.

To set up a kernel on a DEVICE:
1. Represent kernel source code as a C character array:

2. Create a “program” from the source code:

¢ clCreateProgramWithSource

3. Compile and build the “program”:
¢ clBuildProgram

4. Check for compilation errors:

¢ clGetProgramBuildInfo

5. Build executable kernel:

e c|CreateKernel

[ wasn't kidding about flexibility.

const char xsource =
" _kernel void foo(int N, __global float *x){"

int id = get_global_id(0);

if(id<N)
x[id] = id;




OpenCL: building a kernel

We now need to build the kernel [ some steps skipped for brevity |

// not necessary
// nvcc compiles the kernel code when you compile the executable

/* create program from source x/
cl_program program = clCreateProgramWithSource(context, 1,
(const char *x) & source, (size tx) NULL, &err);

/* compile and build program x/
const char xallFlags = " ";
err = clBuildProgram(program, 1, &device, allFlags,

(void (x)(cl_program, voidx)) NULL, NULL);
/* omitted error checking */

/* create runnable kernel x/
cl_kernel kernel = clCreateKernel(program, functionName, &err);

And we have to do that for each kernel.




OpenCL: are we there yet ?

Unbelievably no.

To execute the kernel;

1. Just like CUDA we need to allocate storage on the DEVICE:

2

5

e clCreateBuffer

. We need to add the input arguments one at a time to the kernel:

o clSetKernelArg

. Specify the local work-group size and global thread array sizes.

. Queue the kernel

e clEnqueueNDRangeKernel

. Wait for the kernel to finish:

e clFinish

Nearly there ?



OpenCL: thanks for the memory

We next allocate array space on the DEVICE:

int N = 100; /% vector size x/

/* size of array x/
size t sz = Nxsizeof(float);

float *%d_a; // CUDA uses pointer for array handles

cudaMalloc((voidxx) &d _a, Nxsizeof(float));

int N = 100; /% vector size x/

/* size of array */
size t sz = Nxsizeof(float);

/* create device buffer and copy from host buffer x/
cl._mem c x = clCreateBuffer(context,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sz, h_x, &err);

In this case we have provided CL with a host pointer and clCreateBuffer copies from h_x to ¢_x.




OpenCL: kernel good to go 7

Not quite: we now need to specify each kernel argument one by one.

dim3 dimBlock(256,1,1); // 512 threads per thread-block
dim3 dimGrid((N+255)/256, 1, 1); // Enough thread-blocks to cover N

// Queue kernel on DEVICE
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

/* now set kernel arguments one by one %/
clSetKernelArg(kernel, @, sizeof(int), &N);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &c_x);

/* set thread array */

int dim = 1;

size_t locall[3] = {256,1,1};

size t globall[3] = {256%((N+255-1)/256)),1,1};

/* queue up kernel x/
clLEnqueueNDRangeKernel(queue, kernel, dim, 0, global, local, 0,
(cl_eventx)NULL, NULL);

Note: CUDA uses block sizes + number of blocks.

OpenCL uses block sizes and global number of threads.



OpenCL: simple kernel example

The kernel programming languages are similar:

CUDA

OpenCL

__global__ void simpleKernel(int N,

float *a)
{

/* get thread coordinates *x/
int 1 = threadIdx.x +
blockIdx.xxblockDim. x;

/* do simple task x/
if(i<N)
alil = 1i;

__kernel void simpleKernel(int N,

__global float *a)
{

/* get thread coordinates */
int i = get_global_id(0);

/* do simple task x/
if(i<N)
alil = 1i;

Some minor differences in syntax & identifiers




OpenCL: summary

OpenCL seems to be a panacea: it works on everything...

e OpenCL has a bit of a bad reputation:

CUDA has a richer ecosystem of tools & libraries.

CUDA has more extensive documentation and tutorials.
Platform/device/context/queue complexity.

Competing vendor priorities.

The vendors offer differing levels of support.

e OpenCL:Intel:CPU vectorization is flaky:.

e OpenCL:OS X:CPU limited work-items per work-group
e OpenCL:NVIDIA:GPU trails CUDA in performance.

e Rumors constantly circulate about EOL.

e (On the other hand:

e Runtime compilation adds several optimization opportunities without templating.
e OpenCL is library based, so no special compilers are required.
¢ \endor independence is important.




OpenCL: comparing Jacobi kernels

Recalling the Poisson example: side by side comparison of serial v. CUDA v. OpenCL kernel

lterate:

1
kL Q0 k k k k .
U —4( o) fji+u(j+l)i+u(j_1)i+uj(i+1)+uj(i_1)) fori,j=1,...,N

Serial kernel: CUDA kernel: OpenCL kernel:
void jacobi(const int N, _global__ void jacobi(const int N, ?? void jacobif const int N,
const double *rhs, const double *rhs, ?? const double xrhs,
const double xu, const double u, ?? const double su,
double xnewu){ double xnewu){ ?? double s*newu){
for(int 1=0;i<N;++1i){ // Get thread indices // Get thread indices
for(int j=0;j<N;++j){ const int 1 = blockIdx.xxblockDim.x + threadIdx.x; const int i = ?77;

const int j blockIdx.yxblockDim.y + threadIdx.y; const int j

?7;
// Get linear index into NxN
// inner nodes of (N+2)x(N+2) grid // Check that this is a legal node if((1i < N) & (j < N)){

const int id = (j + 1)%(N + 2) + (i + 1); if((i < N) & (j < N)){

??;
newu[id] = 0.25fx(rhs[id] // Get linear index onto (N+2)x(N+2) grid

+ ulid - (N+2)] const int id = (j + 1)*(N + 2) + (i + 1); }
+ ulid + (N+2)] b
+ ulid - 1] newu[id] = 0.25f*(rhs[id]
+ ulid + 1]); + ulid - (N+2)]

} + ulid + (N+2)]

b + ulid - 1]
I + ulid + 11);
b
¥

Note explicit loops in serial kernel and hidden loops in CUDA and OpenCL kernels.




OpenCL: comparing Jacobi kernels

Recalling the Poisson example: side by side comparison of serial v. CUDA v. OpenCL kernel

lterate:

1
kL Q0 k k k k .
U —4( o) fji+u(j+l)i+u(j_1)i+uj(i+1)+uj(i_1)) fori,j=1,...,N

Serial kernel: CUDA kernel: OpenCL kernel:
void jacobi(const int N, _global__ void jacobi(const int N, __kernel void jacobi(const int N,
const double *rhs, const double *rhs, _global const double *rhs,
const double xu, const double u, __global const double *u,
double *newu){ double *newu){ __global double s*newu){
for(int 1=0;i<N;++1i){ // Get thread indices // Get thread indices
for(int j=0;j<N;++j){ const int 1

blockIdx.x*blockDim.x + threadIdx.x; const int i = get_global_id(0);
const int j blockIdx.yxblockDim.y + threadIdx.y; const int j = get_global_id(1);
// Get linear index into NxN
// inner nodes of (N+2)x(N+2) grid // Check that this is a legal node if((i < N) & (j < N)){
const int id = (j + 1)%(N + 2) + (i + 1); if((i < N) & (j < N)){

// Get linear index into (N+2)x(N+2) grid

newu[id] = 0.25fx(rhs[id] // Get linear index onto (N+2)x(N+2) grid const int id = (7 + 1)*(N + 2) + (i + 1);

+ ulid - (N+2)] const int id = (j + 1)*(N + 2) + (i + 1);

+ ulid + (N+2)] newul[id] = 0.25fx(rhs[id]

+ ulid - 1] newul[id] = 0.25fx(rhs[id] + ulid - (N+2)]

+ ulid + 11); + ulid - (N+2)] + ulid + (N+2)]

} + ulid + (N+2)] + ulid - 1]
} + ulid - 1] + ulid + 11);
by + ulid + 1]); Iy
b b
¥

Note explicit loops in serial kernel and hidden loops in CUDA and OpenCL kernels.




OpenCL: partial reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

__global__ void partialReduceResidual(const int entries,
double xu,
double *newu,
double *xblocksum){

__shared__ double s_blocksum[BDIM];

const int id = blockIdx.xxblockDim.x + threadIdx.Xx;

int alive = blockDim.x;
int t = threadIdx.x;

s_blocksum[threadIdx.x] = 0;

if(id < entries){
const double diff = ul[id] - newulid];
s_blocksum[threadIdx.x] = diffxdiff;

}

while(alive>1){
__syncthreads(); // barrier (make sure s_blocksum is ready)
alive /= 2;
if(t < alive) s_blocksum[t] += s_blocksum[t+alivel;

}

if(t==0)
blocksum[blockIdx.x] = s_blocksum[0];

OpenCL partial reduction kernel:

__kernel void partialReduce( const int entries,

?? const double su,
?? const double *xnewu,
?? double *blocksum){
__local double s_blocksum[BDIM];
const int id = get_global_id();

int alive = ?77;
int t = ?7;

s_blocksum[t] = 0;
// load global data into local memory if in range
if(id < entries){

const double diff = ulid] - newulid];
s_blocksum[t] = diffxdiff;

while(alive>1)A{
barrier(CLK_LOCAL_MEMFENCE); // barrier (make sure s_blocksum is ready)
alive /= 2;

if(t < alive) s_blocksum[t] += s_blocksum[t+alivel;

by

if(t==0)
blocksum[get_group_id(@)] = s_blocksum[0];

More details on OpenCL reduction next time.




Part 4b: Portabllity

alternatives to OpenCL




Many-core: updates

There are additional options
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Intel CPU AMD APU Intel Xeon Phi NVIDIA GPU

OpenACC.

DIRECTIVES FOR ACCELERATORS

NVIDIA.
CUDA

Need an efficient, durable, portable, open-source,

vendor-independent approach for many-core programming




Many-core: porting from CUDA

Existing CUDA code can be ported to other frameworks.

PTX Assembly

PGIl: CUDA-x86 NVIDIA
GPU

Translation to intermediate languages happens at the level of source code or assembly code.

However, this is predicated on using CUDA as the source language.



Portability Approaches: directives

Directive approach

* Use of optional [#pragma]’s to give compiler transformation hints
e Aims for portability, performance and programmability

* Introduced for accelerator support through directives (2012)
* Compilers with OpenACC support:
* gccC 6.1 (https://gcc.gnu.org/wiki/OpenACC), OpenACC toolkit (mm
veloper.nvidia.com/open ),Oﬂﬂﬂ-COﬂqp”er(h /[lomni-compiler.or )

 OpenMP has been around for a while (1997)
OpenMP  OpenMP 4.0 specifications (2013) includes accelerator support

#pragma omp target teams distribute parallel for

for(int 1 = 0; 1 < N; ++1){
yl[i] = a*x[1i] + y[1];

}

Code taken from:
WHAT’'S NEW IN OPENACC 2.0 AND OPENMP 4.0, GTC ‘14 129


https://developer.nvidia.com/openacc
https://developer.nvidia.com/openacc
http://omni-compiler.org

Portability: directives & data movement

Directive approach

* Not centralized anymore due to the offload model
* OpenACC and OpenMP begin to resemble an API rather than code decorations

double a[100];
#pragma acc enter data copyin(a)
// OpenACC code
#pragma acc exit data copyout(a)

lass Matrix {
double *v;
int len
Matrix(int n) {
len = n;
v = new double[len];
#pragma acc enter data create(v[0O:len])

}
~Matrix() {
#pragma acc exit data delete(v[0:len])

delete[] v;

}
}i

Code taken from:
WHAT’'S NEW IN OPENACC 2.0 AND OPENMP 4.0, GTC ‘14 130



Portability: ease of use

My opinion on “Maturity” balanced against “Ease of use”
for portable many-core programming

-

>

NVIDIA.
CUDA
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Maturity

Ease of use

Still need an easy, efficient, durable, portable, open-source,

vendor-independent approach for many-core programming




Step Back: MP| + X 7?7

Which “X” is going to dominate on-node threaded computing ?

MPI + MPI + MPI +
MP! OpenMP oThreads
MPI + MPI + MPI +
CUDA OpenCL OpenACC
MPI + MPI + MPI +
BB Cilk Plus ?

Should it even matter what “X” is 7




Part 4c: OCCA

Open Concurrent
Compute Abstraction




OCCA: easy portability

@ libocca.org/#/ & A A

N\
i

Home Learn About

What is OCCA?

In a nutshell, OCCA (like oca-rina) is an open-source library which aims to

e Make it easy to program different types of devices (e.g. CPU, GPU, FPGA)

e Provide a unified API for interacting with backend device APIs (e.g. OpenMP, CUDA,
OpencCL)

e Use just-in-time compilation to build backend kernels

e Provide a kernel language, a minor extension to C, to abstract programming for each
backend

Quick Navigation

qithub.comy/libocca/occa

libocca.org


http://github.com/libocca/occa
http://libocca.org

GPU: Marmite® of the HPC world

sandwich
A

«— 1SW/day

People love or hate GPUs
& the source Is messy
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Open Concurrent Compute Abstraction (OCCA)

Goals:

e Portability.
e Native code performance.
¢ |[nsulate simulation codes from HPC churn.

¢ Reduce the Marmite-ness of GPUSs.
Design Principles:

e Simplicity.
e Unified interface.
¢ | imited dependencies.

e Explicit offload compute model.
e Kernel language: lightly annotated C.

Codes Exploring OCCA:

Threads

-

NVIDIA

¢ [ibParanumal, ESDGSEM, NUMA, GNuMe,
Nek5K*, libCEED, MFEM, laghos...

GPU

OCCA: OKL: a unified language for parallel architectures, David Medina PhD.
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http://libocca.org

What does OCCA not do ?

Open Concurrent Compute Architecture, no magic unicorns.

Auto-parallelize:
e SOme programmer intervention is required to identity parallel for loops.

Auto-optimize:
* Programmer knowledge of architecture is still invaluable.

Auto-layout:
* The programmer needs to decide how data is arranged in memory.

Auto-distribute:
* You can use MPI+OCCA but you have to write the MPI code.

* \We considered M-OCCA but it devolves quickly into a PGAS.

Low-level code:
e We do not circumvent the vendor compilers.




OCCA: qgive it a spin & live demo

Building the OCCA library:

git clone https://github.com/libocca/occa -b 0.2

cd occa

export OCCA_DIR= pwd"

export LD_LIBRARY_PATH=$LD_ LIBRARY_PATH:$0CCA_DIR/1lib
make -]

Building example:

cd examples/addVector/cpp
make
./main

Try changing the threading model to OpenCL, CUDA, or OpenMP:

emacs mailn.cpp

github.com/libocca/occa
libocca.org
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Portability: approaches of use

Numerous approaches to portability

Front-ends Kernel Back-ends
ND arrays C++ Custom CUDA, OpenMP, & ROCm | 4 _,
]
Vector class C++ - CUDA & OpenCL =
. CUDA, OpenMP, TBB
Library C++ C++ Lambdas std:thread. ROCm
API, Source-to- OpenCL, CUDA,& CUDA, OpenCL,
» source, Kernel C,C++ custom unified kernel Threads,OpenMP,
Languages language HIP (ROCm)
Source-to-
SOUrCe App CUDA OpenCL
Szgfri'éo' - OpenMP.Cilk, OpenCL MPI,
. MPI, OpenCL Insieme IR runtime
compiler
L . OpenMP, OpenACC,
Directives C/C++ #pragma trellis CUDA "
Directives + Hybrid OpenMP, é
cernels C,C++ OpenCL, CUDA OpenMP, OpenCL, CUDA ! 3
PTX Translator CUDA CUDA OpenCL

OCCA emphasis: lightweight and extensible.

“Wu Feng etal @ VT !



OCCA:OKL kernel language

Description

* Minimal extensions to C, familiar for regular programmers

« Explicit loops expose parallelism for modern multicore CPUs and accelerators
 Parallel loops are explicit through the fourth for-loop inner and outer labels

kernel void kernelName(...){

for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){ I
for(int groupY = 0; groupY < yGroups; ++group¥Y; outerl)({

for(int groupX 0; groupX < xGroups; ++groupX; outer0)({

// Work-group implicit 1

for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2){ —’ I;I I;I I;I

for(int itemY = 0; itemY < yItems; ++itemY; innerl){

for(int itemX = 0; itemX < xItems; ++itemX; inner0){
// GPU Kernel Scope

}}}

// Work-item implicit loops

}h}

NVIDIA.

CUDA.

dim3 blockDim(xGroups,yGroups, zGroups) ;
dim3 threadDim(xItems,yltems,zItems);
kernelName<<< blockDim , threadDim >>>(..);

The concept of iterating over groups and items is simple 140



OCCA:OKL kernel language

Outer-loops

» Quter-loops are synonymous with CUDA and OpenCL kernels
e Extension: allow for multiple outer-loops per kernel

kernel void kernelName(...){

for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){
for(int groupY = 0; groupY < yGroups; ++group¥Y; outerl)({

for(int groupX 0; groupX < xGroups; ++groupX; outer0)({

// Work-group implicit loops
for(outer){

for(fon¢rn§ itemz = 0; itemZ < zItems; ++itemZ; inner2){
} for(int itemY = 0; itemY < yItems; ++itemY; innerl){
} for(int itemX = 0; itemX < xItems; ++itemX; inner0){ // Work-item implicit loops
// GPU Kernel Scope
P}
P}

Data dependencies are found through a variable dependency graph

141



OCCA:OKL kernel language

Outer-loops

» Quter-loops are synonymous with CUDA and OpenCL kernels

e Extension: allow for multiple outer-loops per kernel

kernel void kernelName(...){

for(outer){
for(inner){
}

}

for(outer){
for(inner){
}

}

for(outer){
for(inner){
}
}-.
}

Data dependencies are found through a variable dependency graph
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OCCA:OKL kernel language

Outer-loops

» Quter-loops are synonymous with CUDA and OpenCL kernels

e Extension: allow for multiple outer-loops per kernel

kernel void kernelName(...){

ke{??éxﬁ?}? kernelName(...){

EorfopbaERE) |
iof&i?rﬂﬁﬁéﬁ ) {

oy }

else{

forgoysatas) ¢
§°f&f?ﬁﬁﬁé£){

oy }

for(outer){

whiQE (2RBey I
or (outer){
} for(inner){

Data dependencies are found through a variable dependency graph
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OCCA:OKL kernel language

Shared memory

for(int groupX = 0; groupX < xGroups; ++groupX; outer0){ // Work-group implicit loops
shared int sharedvVar[16];

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
sharedvVar[itemX] = itemX;

}

// Auto-insert [barrier(localMemFence); ]

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
int 1 = (sharedvVar[itemX] + sharedVar[(itemX + 1) % 16]);

}

Exclusive memory

for(int groupX = 0; groupX < xXGroups; ++groupX; outer0){ // Work-group implicit loops
exclusive int exclusiveVar, exclusiveArray[l1l0];

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
exclusiveVar = itemX; // Pre-fetch

}

// Auto-insert [barrier(localMemFence); ]

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
int i = exclusiveVar; // Use pre-fetched data

}

ocal barriers are auto-inserted
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OCCA:OKL kernel language

Shared memory

for(int groupX = 0; groupX < xGroups; ++groupX; outer0){ // Work-group implicit loops
shared int sharedvVar[16];

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
sharedvVar[itemX] = itemX;

}

// Auto-insert [barrier(localMemFence); ]

for(int itemX = 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
int 1 = (sharedvVar[itemX] + sharedVar[(itemX + 1) % 16]);

}

Exclusive memory (similar to threadPrivate)

nt groupX = 0; groupX < xGroups; ++groupX; outer0){ // Work-group implicit loops
exclusiveVar hwe int exclusiveVar, exclusiveArray[1l0];
exclusiveVar

exclusiveVar or (int item
exclusiveVar

= 0; itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
itemX; // Pre-fetch

Xuto-insert [bgrrier(localMemFence); ]

for(int itemX = Om itemX < 16; ++ itemX; inner0){ // Work-item implicit loops
int i = exclusiveVar; // Use pre-fetched data

}

ocal barriers are auto-inserted
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OpenCL/CUDA to OCCA IR

Description

e Parser can translate OpenCL/CUDA kernels to OCCA IR*
» Although OCCA IR was derived from the GPU model, there are complexities

occaOuterFor2{ // Work-group implicit loop occaOuterFor2{ // Work-group implicit loop
occaOuterForl{ occalOuterForl{
occalOuterFor0{ occaOuterFor0{

occaInnerFor2{ // Work-item implicit loop occaInnerFor2{ // Work-item implicit loop
occalnnerForl{ occalnnerForl{

occalnnerFor0{ occalnnerFor0{
// GPU kernel scope

11} IR

P}
P} IR

NVIDIA.

CUDA.

// GPU kernel scope

// GPU kernel scope

Since we derived OCCA IR from the GPU model, the inverse should be easy ... right? 146



OCCA: example adding two vectors

OCCA kernel language syntax & macros: http.//www.github.com/tcew/OCCAZ2
147


http://www.github.com/tcew/OCCA

int main(int argc, char *7

#include "occa.hpp"

kernel void addVectors(const int entries,
const float * a,
const float * b,

int N = 50; .
float *a = new float[N] ) ) float ab) {
float *b = new float[N: for(lnF b=0ib<entrles;b+=}0;outer0){
float *ab = new float[N: for(int n=b;n<b+10;++n;inner0){
for(int i = 0; i < N; + if(n < entries)

a[i] = i; ab[n] = a[n] + b[n];

bri] =1 - i; ¥

ab[i] = 0; }
} }
occa: :device device;
occa: :kernel addVectors;
occa::memory o_a, o b, o auoy
device.setup(“OpenCL”, 0, 0); // (Platform, Device) = (0, 0)
o a = device.malloc(N*sizeof(float));
o b = device.malloc(N*sizeof(float));
o_ab = device.malloc(N*sizeof(float));

o_a.copyFrom(a);
o _b.copyFrom(b);

addVectors = device.buildKernelFromSource *“addVectors.okl", 'addVectors");

addVectors(N, o a, o b, o ab);
o_ab.copyTo(ab);

for(int 1 = 0; i < 5; ++1i)
stdsscout << i << ": " << ab[i] << '\n';

OCCA: example adding two vectors

#include <iostream>

U

OCCA kernel language syntax & macros: http.//www.github.com/tcew/OCCA2

Example HOST & DEVICE code: https:/github.com/tcew/OCCAZ/tree/master/examples/addVectors



http://www.github.com/tcew/OCCA
https://github.com/tcew/OCCA2/tree/master/examples/addVectors

entries = 5;

a = ones(entries, 1);
b ones(entries, 1);
ab zeros(entries, 1);

from ctypes
import occa

device = occa.device('OpenCL', 0, 0);

#include "stdlib.h"

#include entries = 5

#include o a = device.malloc(a , 'single');
) a = [i o b = device.malloc(b , 'single');
int main(§ entries b =11 -1 o ab = device.malloc(ab, 'single');

int 1i;

device = occa.de addvVectors = device.buildKernelFromSource( 'addVectors.occa', ...

float *

float * 'addVectors');
float * # Dynamic range?
a = Float32[1 - o a dims = 1-:
for(i = _ . — - !
ali] b = Float32[1 o b = devic] itemsPerGroup = 2;
ab = Float32[0 o _ab = devic] groups = (entries + itemsPerGroup - 1)/itemsPerGroup;

o_a occa.malld
ob occa.mallg
o _ab = occa.malld

addVectors addVectors.setWorkingDims (dims, itemsPerGroup, groups);

addVectors(occa.type(entries, 'int32'), ...

dims =1 o_a, o_b, o_ab);
addVectors = occa itemsPerGrou
groups = (enf] ab = o_ab(:);

addVectors.s

dims = 1;
itemsPerGroup = addVectors([c_in
groups = (entries

o a, o b, o ab])

occa.setWorkingDl o ab.copyTo(ab, c_float)

print ab

occa.runKernel (ad
o b, o _ab)
occa.memcpy(ab, o_ab)

println(ab)

occaCopyMemToPtr (ab, o_ab, occaAutoSize, occaNoOffset);

for(i = 0; i < 5; ++i)
printf("%d = %f\n", i, ab[i]);

All the HOST codes use the same kernel.

Example HOST code: https:/github.com/tcew/OCCAZ/tree/master/examples/addVectors



https://github.com/tcew/OCCA2/tree/master/examples/addVectors

OCCA: comparing Jacobi kernels

Simple Poisson example: comparison of serial v. CUDA v. OpenCL v. OCCA kernels

Serial kernel: CUDA kernel: OpenCL kernel:
void jacobi(const int N, _global__ void jacobi(const int N, __kernel void jacobi(const int N,
const datafloat *rhs, const datafloat *rhs, __global const datafloat
const datafloat x*u, const datafloat x*u, __global const datafloat
datafloat xnewu){ datafloat s*newu){ __global datafloat *xnewu)
for(int 1=0;i<N;++1i){ // Get thread indices // Get thread indices
for(int j=0;j<N;++j){ const int 1 = blockIdx.xxblockDim.x + threadIdx.x; const int i = get_global_id(0);
const int 7 = blockIdx.y*blockDim.v + threadIdX.v: const int i = get alobal id(1):
// G
77 il OCCA IR kernel: ¢ |OKL kernel:
cons
occaKernel void jacobi(occaKernelInfoArg, onto| kernel void jacobi(const int N, x(N+2) grid
newu const int occaVariable N, 1) (1 const datafloat *rhs, + (i + 1);
occaPointer const datafloat xrhs, const datafloat xu,
occaPointer const datafloat *u, s[id datafloat *newu){
occaPointer datafloat sxnewu){ ulid 2)]1
ulid for(int startl1=0; startl<N; startl+=BY; outerl){ 2)1
I occaOuterForl{ ulid for(int start0=0; start@<N; start@+=BX; outer0){
I occaluterForo{ ulid ;
} for(int j=startl; j<startl+BY; ++j; innerl){
occalnnerForil{ for(int i=start@; i<start@+BX; ++i; inner0){
occalnnerForo{

if((i < N) & (j < N)){
// Get thread indices

const int i = occaGloballdo; // Get linear index into (N+2)x(N+2) grid
const int j = occaGloballdl; const int id = (j + 1)*(N + 2) + (i + 1);
if((i < N) & (j < N))A{ newu[id] = 0.25fx(rhs[id]

+ ulid - (N+2)]
]

// Get linear index into (N+2)x(N+2) grid + ulid + (N+2)
const int id = (j + 1)%(N + 2) + (i + 1); + ulid - 1]
+ ulid + 1]);

newu[id] = 0.25f%(rhs[id] }

+ ulid - (N+2)] }

+ ulid + (N+2)] ¥

+ ulid - 1] ¥

+ ulid + 1]1); }

3333 }

In OCCA we split the i and j loops both into outer and inner loops.

From the OCCA kernel we can reproduce the serial, CUDA, and OpenCL kernels (also pthreads, openmp... )5,



Online Compilation

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism, making use of the OCCA

R

Initial OpenCL/| [Transform| |Prototypes, Split Kernels, Kernel

Preprocessor || Tokenize > | CUDA H» OCCA M Barriers, # SetupWork M :

AST : : Analysis

Setup Loops Arguments Dimensions
Source Source ~ti %4
. —» “Content.’ —» OKL/OFL Parser —> : —> Run Flm.e —> | Binary
File M Compilation
+
source.okl . i <hash> <hash>
ﬁ Salt A A

'

HHash

Custom compilation tools tailored for code manipulation and analysis




Behind the Scenes: caching and hashing

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels,
Preprocessor ¥ Tokenize > AST | CUDA H» OCCA | Barriers, #» SetupWork >
Setup Loops Arguments Dimensions

Kernel
Analysis

#define N 10

int 1 N

Custom compilation tools tailored for code manipulation and analysis




OCCA Infrastructure

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels,
Preprocessor |4 Tokenize > AST | CUDA H» OCCA | Barriers, #» SetupWork >
Setup Loops Arguments Dimensions

Kernel
Analysis

Custom compilation tools tailored for code manipulation and analysis




OCCA Infrastructure

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels,
Preprocessor - Tokenize AST | CUDA H» OCCA M Barriers, # SetupWork M
Setup Loops Arguments Dimensions

Kernel
Analysis

Custom compilation tools tailored for code manipulation and analysis




OCCA Infrastructure

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels,
Preprocessor ¥ Tokenize AST CUDA M OCCA H» Barriers, # SetupWork =¥
Setup Loops Arguments Dimensions

Kernel
Analysis

Declaration™

Custom compilation tools tailored for code manipulation and analysis




OCCA Infrastructure

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels,
Preprocessor ¥ Tokenize AST CUDA H» OCCA M Barriers, #» SetupWork M
Setup Loops Arguments Dimensions

Kernel
Analysis

Declaration Statement

a

Custom compilation tools tailored for code manipulation and analysis




OCCA Infrastructure

Source-to-Source Compilation

e Extended C and Fortran to expose parallelism & make use of OCCA IR

Initial OpenCL/| [Transform| |Prototypes, Split Kernels, Kernel

Preprocessor || Tokenize > CUDA OCCA Barriers, Setup Work ¥ :

AST : : Analysis

Setup Loops Arguments Dimensions
Source Source ~ti %4
, —» “Content. =9 OKL/OFEL Parser —> , —> Run Flm.e —> [ Binary
File M Compilation
+
source.okl | i <hash> <hash>
(7 Salt A A

'

HHash

Custom compilation tools tailored for code manipulation and analysis




Hands On #3: OCCA flow simulation

In this exercise you will create a tflow simulation

Work in teams of two.



OCCA Flow Simulation: instructions

#1. build the OCCA library:

# login node: clone the OCCA repo
git clone https://github.com/libocca/occa -b 0.2

# compute node: cd to the OCCA directory
cd occa

# build OCCA
make -

# add OCCA_DIR to env and add dynamic library path
export OCCA_DIR="pwd"

export LD_LIBRARY PATH=$LD LIBRARY PATH:$OCCA DIR/lib

#2. build the OCCA LBM code:

# login node: clone the ATPESC18 repo
git clone https://github.com/tcew/ATPESC18

# compute node: cd to the Iom directory
cd ATPESC18/handsOn/lbm

# build OCCA Ibm solver
make -f makefile.occa

#3. login node: save png image with
white background to the Ibm directory:

#4. run the lbm code with your png image
# (using 400 as a flow volume threshold)

.JoccaLBM yourlmageName.png 400



https://github.com/libocca/occa
https://github.com/tcew/ATPESC18

OCCA Flow Simulation: background

The image pixels become flow nodes in a lattice: the Lattice Boltzmann Method tracks
the density of 9 species of colliding particles constrained to move on the lattice

Details: a D2Q09 lattice Boltzmann method is implemented using an OCCA update kernel
that uses a single thread to updates the 9 particle densities at each lattice node.




OCCA Flow Simulation: instructions

#5. the Ibm code generates bah####HHt.png image files:

# To make a movie:
ffmpeg -r 24 -i bah%06d.png -b:v 16384k -vf scale=1024:-1 foo.mp4

#6. transfer foo.mp4 to your laptop via globus and open with movie player:

Raise your hand and demo your movie when done.




OCCA Flow: changing thread model

The lbom code is set up to use CUDA by default.

#7. Find out what compute modes are available:

$OCCA DIR/bin/occainfo

#8. change OCCA device setup in main to change the thread model:
occa:.device device;
/[ device.setup("mode=0penCL, devicelD=1, platformID=0");
device.setup("mode=CUDA, devicelD=0");
// device.setup("mode=0OpenMP");

#9. re-make the executable:

make -f makefile.occa

#10. rerun

.JoccaLBM yourlmageName.png 400

# Do you notice a speed change ?

#11. try installing and running on your laptop - this might be tricky.

Congratulations: you have found out how easy it can be to switch compute mode with OCCA.




OCCA: apps & benchmarks

High-order finite difference for Reverse Time Migration (imaging algorithm)

M Original OpenMP M Original CUDA

OCCA:OpenMP (CPU-kernel) OCCA::CUDA (GPU-kernel) ®
= OCCA:OpenMP (GPU-kernel) = OCCA::OpenCL (GPU-kernel) @
OCCA::CUDA (CPU-kernel) - ()
B OCCA::OpenCL (CPU-kernel) ° ®e®® o
v
0%, °
OpenMP - Intel Xeon CPU E5-2640 °®" ¢ %,
OpenCL/CUDA : NVIDIA Tesla K10 v
- 163



OCCA: apps & benchmarks

Discontinuous Galerkin for RTM

Est. GFLOPS

1000
= OpenCL (AMD Tahiti)
OpenCL (NVIDIA Titan)
CUDA (NVIDIA Titan)
750

500
250 ] - |
0
2 3 4 5

Polynomial Order

Est. GFLOPS

180

135

©
(@)

45

= OpenCL-AMD
OpenCL-Intel

M OpenMP (icpc)

| =1 OpenMP (g++)

s ||| ||| |I| II
2 3 4 5 0

Polynomial Order
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OCCA: apps & benchmarks

Lattice Boltzmann Method in Core Sample Analysis

Comparison across platforms (Normalized with original code)

oiviese _ooveoiosa__ e G ow G55 oo

Ref dense code |CPU |Intel i7-5960X 1290 | —

[-O3 in gcc 4.8] |1-core

OpenMP CPU |Intel i7-5960X 11.12 22|x 116
OpenCL: Intel CPU |Intel i7-5960X 11.18 22(x 115
OpenCL: AMD |GPU |AMD 7990 1.39 176|x 928
OpenCL: NVIDIA|GPU  |GTX 980 1.25 196|x 1032
CUDA: NVIDIA |GPU GTX 980 1.20 205 x 1075

Comparison across platforms (Normalized with OCCA::OpenMP)

N i Dol et i Ga1 Speos

OpenMP CPU |Intel i7-5960X 11.12 2/x1.0
OpenCL: Intel CPU |Intel i7-5960X 11.18 22(x 1.0
OpenCL: AMD |GPU |AMD 7990 1.39 176(x 8.0
OpenCL: NVIDIA|GPU |GTX 980 1.25 196|x 8.9
CUDA: NVIDIA |GPU |GTX 980 1.20 205(x 9.3

€10

€16

€)

D3Q19




Applications

Discontinuous Galerkin for shallow water equations

Million Nodes per second

1800

1350

900

450

OCCA:CL, K40
[ OCCA:CUDA, K40
& OCCA:CL, Tahiti

846

1129

133

1509

941

770

Polynomial Order
1

X650

240

180

120

60

Compute-Time vs Real-Time

x208

X95

2
3
4

x47

OCCA:CL,

Intel i7

| Il OCCA:OpenMP, Intel i7

52

64

107

154

120

111
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OCCA: apps & benchmarks

Algebraic multigrid for elliptic problems

Setup Time Solve Time
2.5 9
8
2
3 7
wn
g 6
1.5
2 5
S
Q 4
e 1
5 3
=
0.5 2
1
0 0
1.8M 4.2M 5.9M 8.1M 1.8M 4.2M 5.9M 8.1M
# of unknowns # of unknowns
CUDA on Titan W OpenCL on Titan OpenCL on Tahiti —>
% OpenCLon Inteli7 M OpenMP on Intel i7 ) )
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OCCA: apps & benchmarks

Monte Carlo for neutronics
Collaborations with Argonne National Lab

XSBench RSBench

B Original OpenMP B Original CUDA B Original OpenMP B Original CUDA
OCCA:OpenMP OCCA:CUDA OCCA:OpenMP OCCA:CUDA
=1 OCCA:OpenCL =l OCCA:OpenCL =1 OCCA:OpenCL =l OCCA:OpenCL
OpenMP . Intel Xeon CPU E5-2650

OpenCL/CUDA : NVIDIA Tesla K20c
168



OCCA: apps & benchmarks

Three of our ported Rodinia benchmarks, based on the “11 Dwarves”

Backprop BES Needleman

0 0
CPU CUDA  OpenCL CPU CUDA OpenCL CPU CUDA OpenCL

M Original OpenMP B Original CUDA B Original OpenCL

OCCA:OpenMP . .
W OCCA:CPU:OpencL | OCCACUDA I OCCA:OpenCL
OpenMP - Intel Xeon CPU E5-2650

OpenCL/CUDA : NVIDIA Tesla K20c

https://github.com/dmed256/OCCA-Benchmarks 169
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Cloud GPUs: proceed with caution...

< = & www.paranumal.com/single-post/2( S A A n

PARALLEL NUMERICAL ALGORITHMS RESEARCH TEAM @VT

Home Software Blog Publications Team Alums Gallery paranumal(@vt.edu

Concurrent Cloud Computing: installing
occaBench for V100

February 6,2018 |  Tim Warburton
Our Recent Posts

Overview: This week we have been experimenting with instances on Amazon AWS and
Paperspace that come equipped with NVIDIA V100 GPUs. These GPUs are hot : libParanumal: Galerkin-
properties and not widely available, so we had to request special access to V100 Boltzmann 3D flow

equipped instances on both systems. Both AWS and Paperspace responded quickly to . .
PP 4 persp P PEEY simulation

July 5, 2018

our requests. The Paperspace support team was also incredibly responsive, patient, and

helpful getting through some minor technical issues.

Note: this article is not an endorsement of these companies or their products, we are e libParanumal: Galerkin-
Jjust providing an insight into our experience getting started on their systems. Your L Boltzmann flow simulation
mileage may vary. In our experience both systems were very similar once the instances June 28, 2018

were provisioned.

Undergraduate Summer

Configuration: On AWS we set up a p3.2xlarge instance and on Paperspace we set up R H Join th
esearcners Join e

a V100 machine. In both cases we chose Ubuntu 16.04, for no other reason than
Paranumal Team

familiarity with Ubuntu/Linux.

For my own development needs | have switched to use GPU cloud servers including:

gpueater (AMD GPUs), Amazon AWS (NVIDIA GPUSs incl. V100), paperspace (NVIDIA GPUs incl




tim.warburton@vt.edu

L VirginiaTech

Invent the Future®


mailto:tim.warburton@vt.edu

